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Number Systems 
and 

Data Representation
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Lecture Outline
Number Systems

– Binary, Octal, Hexadecimal

 Representation of characters using 
codes

 Representation of Numbers
– Integer, Floating Point, Binary Coded 

Decimal

 Program Language and Data Types
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Data Representation?
Representation = Measurement

 Most things in the “Real World” actually 
exist as a single, continuously varying 
quantity Mass, Volume, Speed, Pressure, Temperature

 Easy to measure by “representing” it 
using a different thing that varies in the 
same way Eg. Pressure as the height of column 
of mercury or as voltage produced by a pressure 
transducer

 These are ANALOG measurements



4

Digital Representation

 Convert ANALOG to DIGITAL 
measurement by using a scale of units

 DIGITAL measurements
– In units – a set of symbolic values - digits

– Values larger than any symbol in the set use 
sequence of digits – Units, Tens, Hundreds…

– Measured in discrete or whole units

– Difficult to measure something that is not a 
multiple of units in size. Eg Fractions
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Analog vs. Digital representation
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Data Representation
 Computers use digital representation

 Based on a binary system 
(uses on/off states to represent 2 digits).

Many different types of data.
– Examples?

 ALL data (no matter how complex)

must be represented in memory as 
binary digits (bits).
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Number systems and computers

 Computers store all data as binary digits, 
but we may need to convert this to a 
number system we are familiar with.

 Computer programs and data are often 
represented (outside the computer) using 
octal and hexadecimal number systems 
because they are a short hand way of 
representing binary numbers. 
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Number Systems - Decimal

 The decimal system is a base-10 system.

 There are 10 distinct digits (0 to 9) to 
represent any quantity. 

 For an n-digit number, the value that each 
digit represents depends on its weight or 
position.

 The weights are based on powers of 10.

1024 = 1*103 + 0*102 + 2*101 + 4*100 = 1000 + 20 + 4
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Number Systems - Binary

 The binary system is a base-2 system.

 There are 2 distinct digits (0 and 1) to 
represent any quantity. 

 For an n-digit number, the value of a digit 
in each column depends on its position.

 The weights are based on powers of 2.

10112 = 1*23 + 0*22 + 1*21 + 1*20 =8+2+1 =1110
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Number Systems - Octal

 Octal and hexadecimal systems provide a 
shorthand way to deal with the long strings of 
1‟s and 0‟s in binary. 

 Octal is base-8 system using the digits 0 to 7.

 To convert to decimal, you can again use a 
column weighted system

75128 = 7*83 + 5*82 + 1*81 + 2*80 = 391410

 An octal number can easily be converted to 
binary by replacing each octal digit with the 
corresponding group of 3 binary digits
75128 = 1111010010102
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Number Systems - Hexadecimal

 Hexadecimal is a base-16 system.

 It contains the digits 0 to 9 and the 
letters A to F  (16 digit values).

 The letters A to F represent the unit 
values 10 to 15. 

 This system is often used in 
programming as a condensed form for 
binary numbers  (0x00FF, 00FFh)

 To convert to decimal, use a weighted 
system with powers of 16.
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Number Systems - Hexadecimal

 Conversion to binary is done the same 
way as octal to binary conversions.

 This time though the binary digits are 
organised into groups of 4.

 Conversion from binary to hexadecimal 
involves breaking the bits into groups of 
4 and replacing them with the 
hexadecimal equivalent.
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Example #1

Value of 2001 in Binary, Octal and Hexadecimal
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Example #2

Conversion: Binary  Octal  Hexadecimal
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Decimal to BaseN Conversions

 To convert from decimal to a different 
number base such as Octal, Binary or 
Hexadecimal involves repeated division 
by that number base

 Keep dividing until the quotient is zero

 Use the remainders in reverse order as 
the digits of the converted number
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Example #3
Decimal to Binary 1492 (decimal) = ??? (binary)

Repeated Divide by 2
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BaseN to Decimal Conversions

 Multiply each digit by increasing powers of the 
base value and add the terms

 Example: 101102 = ??? (decimal)
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Data Representation

 Computers store everything as binary digits. 
So, how can we encode numbers, images, sound, 
text ?? 

 We need standard encoding systems for each 
type of data. 

 Some standards evolve from proprietary 
products which became very popular. 

 Other standards are created by official 
industry bodies where none previously existed.
– Some example encoding standards are ?
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Alphanumeric Data

 Alphanumeric data such as names and 
addresses are represented by assigning a 
unique binary code or sequence of bits to 
represent each character.  

 As each character is entered from a keyboard 
(or other input device) it is converted into a 
binary code.

 Character code sets contain two types of 
characters:
– Printable (normal characters) 

– Non-printable. Characters used as control codes. 
• CTRL G  (beep)
• CTRL Z   (end of file)
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Alphanumeric Codes

 There are 3 main coding methods in use: 
– ASCII

– EBCDIC

– Unicode
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ASCII

 7-bit code (128 characters) 

 has an extended 8-bit version 

 used on PC‟s and non-IBM mainframes

 widely used to transfer data from one 
computer to another 

 Examples:
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EBCDIC

 An 8-bit code (256 characters)

 Different collating sequence to ASCII

 used on mainframe IBM machine

 Both ASCII and EBCDIC are 8 bit codes 
inadequate for representing all 
international characters
– Some European characters

– Most non-Alphabetic languages 
eg Mandarin, Kanji, Arabic, etc…
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Unicode

 New 16 bit standard - can represent 65,536 
characters

 Of which 49,000 have been defined
– 6400 reserved for private use
– 10,000 for future expansions

 Incorporates ASCII-7
 Example - Java code:
char letter = „A‟;
char word[ ] = “YES”;
stores the values using Unicode characters
Java VM uses 2 bytes to store one unicode character.

0000 0000 0100 0001

0000 0000 0100 00101 0000 0000 0101 00110000 0000 0101 1001
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Numeric Data
 Need to perform computations

 Need to represent only numbers

 Using ASCII coded digits is very inefficient

 Representation depends on nature of the 
data and processing requirements
– Display purposes only (no computations): CHAR

• PRINT  125.00

– Computation involving integers: INT
• COMPUTE  16  /  3  =  5

– Computation involving fractions: FLOAT
• COMPUTE  2.001001  *  3.012301  =  6.0276173133
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Representing Numeric Data
 Stored within the computer using one of several 

different numeric representation systems 

 Derived from the binary (base 2) number system. 

 We can represent unsigned numbers from 0-255 
just using 8 bits

 Or in general we can represent values from 0 to 
2N-1 using N bits. 

 The maximum value is restricted by the number of 
bits available (called Truncation or Overflow)

 However, most programming languages support 
manipulation of signed and fractional numbers. 
– How can these be represented in binary form? 
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Representing Numeric Data

 Range of Values 0 to 2N-1 in N bits

N Range N Range

4 0 to 15 10 0 to 1023

5 0 to 31 16 0 to 65535

6 0 to 63 20 0 to 1048575

7 0 to 127 32 0 to 4294967295

8 0 to 255 64 0 to 1844674407370955165
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Integer Representation
 UNSIGNED representing numbers from 0 

upwards or SIGNED to allow for negatives.
 In the computer we only have binary digits, 

so to represent negative integers we need 
some sort of convention. 

 Four conventions in use for representing 
negative integers are: 
– Sign Magnitude
– 1‟s Complement
– 2‟s Complement
– Excess 128
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Negative Integers – Sign Magnitude

 Simplest form of representation 
 In an n-bit word, the rightmost n-1 bits 

hold the magnitude of the integer
 Example:

– +6 in 8-bit representation is: 00000110
– -6 in 8-bit representation is: 10000110

 Disadvantages
– arithmetic is difficult 
– Two representations for zero

• 00000000
• 10000000
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Binary Arithmetic 

Addition Table

Digit Digit Sum Carry

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1
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Negative Integers – One’s (1’s) Complement

 Computers generally use a system called 
“complementary representation” to store 
negative integers.

 Two basic types - ones and twos 
complement, of which 2‟s complement is 
the most widely used.

 The number range is split into two halves, 
to represent the positive and negative 
numbers.

 Negative numbers begin with 1, positive 
with 0.
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Negative Integers – One’s (1’s) Complement

 To perform 1‟s complement operation on a binary number,
replace 1‟s with 0‟s and 0‟s with 1‟s (ie Complement it!)

+6 represented by:   00000110

-6 represented by:   11111001

 Advantages: arithmetic is easier (cheaper/faster electronics)

 Fairly straightforward addition

– Add any carry from the Most Significant (left-most) Bit 
to Least Significant (right-most) Bit of the result

 For subtraction 

– form 1‟s complement of number to be subtracted and then 
add

 Disadvantages : still two representations for zero

00000000 and 11111111 (in 8-bit representation)
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Negative Integers – Two’s (2’s) Complement

 To perform the 2‟s complement operation on a 
binary number

– replace 1‟s with 0‟s and 0‟s with 1‟s (i.e. the one‟s 
complement of the number) 

– add 1

+6 represented by: 00000110

-6 represented by: 11111010

 Advantages:

– Arithmetic is very straightforward

– End Around Carry is ignored

 only one representation for zero (00000000)
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Negative Integers – Two’s (2’s) Complement

Two’s Complement
–To convert an integer to 2’s complement

»Take the binary form of the number

00000110 (6 as an 8-bit representation)

»Flip the bits:  (Find 1‟s Complement)

11111001

»Add 1

11111001

+1

11111010 (2‟s complement of 6)

–Justification of representation: 6+(-6)=0?

00000110 (6)

+11111010 (2’s complement of 6)

100000000 (0)
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Negative Integers – Two’s (2’s) Complement

Properties of Two’s Complement
–The 2’s comp of a 2’s comp is the original number

00000110 (6)

11111010 (2’s comp of 6)

00000101 

+1

00000110 (2’s comp of 2’s comp of 6)

–The sign of a number is given by its MSB

The bit patterns:

00000000 represents zero

0nnnnnnn represents positive numbers

1nnnnnnn represents negative numbers
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Negative Integers – Two’s (2’s) Complement

•Addition
–Addition is performed by adding corresponding bits

00000111 ( 7)

+00000101 (+5)

00001100 (12)

•Subtraction
–Subtraction is performed by adding the 2’s complement

–Ignore End-Around-Carry

00001100 (12)

+11111011 (-5)

100000111 ( 7)
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Negative Integers – Two’s (2’s) Complement

•Interpretation of Negative Results
00000101 (  5)

+11110100 (-12)

11111001 ( )

–Result is negative

MSB of result is 1 so it is a negative number in 2’s complement 
form

–Negative what?

Take the 2’s comp of the result to find out since the 2’s comp 
of a 2’s comp is the original number

–Negative 7

the 2’s complement of 11111001 is 00000111 or 710
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excess 128 representation

 excess 128 for 8-bit signed numbers
(or excess 2m-1 for m-bit numbers)

 Stored as the true value plus 128
eg. –3  -3+128=125 (01111101)

26  26+128=154 (10011010)

 Number in range –128 to +127 
map to bit values    0  to 255
same as 2‟s comp, but with sign bit reversed!!
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Binary Fractions

 The Binary Point
– Digits on the left    +ve powers of 2

– Digits on the right  –ve powers of 2

16

4

2

0.5

+0.125

22.62510

0010110.101002

1 1/2 (0.5)

2   1/4 (0.25)

4     1/16 (0.125)

8       1/32 (0.0625)

16     
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Integer Overflow
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 Problem: word size is fixed, but addition 
can produce a result that is too large to fit 
in the number of bits available.
This is called overflow.

 If two numbers of the same sign are added, 
but the result has the opposite sign then 
overflow has occurred

 Overflow can occur whether or not there is 
a carry

 Examples:
01000000 ( +64)  10000000 (-128)

01000001 ( +65)  11000000 ( -64)

10000001 (-127)  01000000 ( +64)
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Floating Point Representation 
 Fractional numbers, and very large or very small 

numbers can be represented with only a few 
digits by using scientific notation. For example:
– 976,000,000,000,000   = 9.76 * 1014

– 0.0000000000000976  = 9.76 * 10-14

 This same approach can be used for binary 
numbers. A number represented by 

±M*B±E

can be stored in a binary word with three fields:
– Sign - plus or minus
– Mantissa M (often called the significand)
– Exponent E (includes exponent sign)
– The base B is generally 2 and need not be stored.
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Floating Point Representation 
 Typical 32-bit Representation

– The first bit contains the sign

– The next  8 bits contain the exponent

– The remaining 23 bits contain the mantissa

 The more bits we use for the exponent, the larger 
the range of numbers available, but at the expense 
of precision.  We still only have a total of 232

numbers that can be represented.

 A value from a calculation may have to be rounded 
to the nearest value that can be represented.

 Converting 5.75 to 32 bit IEEE format

5.75 (dec)= 101.11 (bin)

= +1.0111 * 2
+2
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Floating Point Representation 
 The only way to increase both range 

and precision is to use more bits.
 with 32 bits, 232 numbers can be 

represented
 with 64 bits, 264 numbers can be 

represented 
 Most microcomputers offer at least 

single precision (32 bit) and double 
precision (64 bit) numbers.

 Mainframes will have several larger 
floating point formats available. 
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Floating Point Representation 
 Standards

– Several floating-point representations exist 
including:

• IBM System/370

• VAX

• IEEE Standard 754

 Overflow refers to values whose 
magnitude is too large to be represented.

 Underflow refers to numbers whose 
fractional magnitude is too small to be 
represented - they are then usually 
approximated by zero.
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Floating Point Arithmetic 

 (Not Examinable)

Multiplication and division involve 
adding or subtracting exponents, and 
multiplying the mantissas much like 
for integer arithmetic.

 Addition and subtraction are more 
complicated as the operands must 
have the same exponent - this may 
involve shifting the radix point on one 
of the operands.



46

Binary Coded Decimal 

 Scheme whereby each decimal digit is 
represented by its 4-bit binary code

7 =  0111

246 =  001001000110

 Many CPUs provide arithmetic 
instructions for operating directly on 
BCD. However, calculations slower and 
more difficult. 
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Boolean Representation 
 Boolean or logical data type is used to 

represent only two values:
– TRUE

– FALSE

 Although only one bit is needed, a single 
byte often used.  

 It may be represented as:
– 0016 = FALSE

– FF16 or Non-Zero = TRUE  

 This data type is used with logical 
operators such as comparisons  = > < …
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Programming languages and 
data types
 CPU will have instructions for dealing with 

limited set of data types (primitive data 
types).  Usually these are:
– Char  

– Boolean  

– Integer

– Real 

– Memory addresses

 Recent processors include special 
instructions to deal with multimedia data 
eg MMX extension
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Data Representation

 All languages allow programmer to 
specify data as belonging to 
particular data types. 

 Programmers can also define special 
“user defined” variable data types 
such as days_of_ week

 Software can combine primitive data 
types to form data structures such as 
strings, arrays, records, etc…
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Data Type Selection

 Consider the type of data and its use.

 Alphanumeric for text (eg. surname, subject name)

 Alphanumeric for numbers not used in 
calculations (eg. phone number, postcode)

 One of the numeric data types for numbers

 Binary integers for whole numbers
– signed or unsigned as appropriate

 Floating point for large numbers, fractions, 
or approximations in measurement

 Boolean for flags
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(end)
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