
1

Number Systems
and

Data Representation

2

Lecture Outline
Number Systems

– Binary, Octal, Hexadecimal

 Representation of characters using
codes

 Representation of Numbers
– Integer, Floating Point, Binary Coded

Decimal

 Program Language and Data Types

3

Data Representation?
Representation = Measurement

 Most things in the “Real World” actually
exist as a single, continuously varying
quantity Mass, Volume, Speed, Pressure, Temperature

 Easy to measure by “representing” it
using a different thing that varies in the
same way Eg. Pressure as the height of column
of mercury or as voltage produced by a pressure
transducer

 These are ANALOG measurements

4

Digital Representation

 Convert ANALOG to DIGITAL
measurement by using a scale of units

 DIGITAL measurements
– In units – a set of symbolic values - digits

– Values larger than any symbol in the set use
sequence of digits – Units, Tens, Hundreds…

– Measured in discrete or whole units

– Difficult to measure something that is not a
multiple of units in size. Eg Fractions

5

Analog vs. Digital representation

6

Data Representation
 Computers use digital representation

 Based on a binary system
(uses on/off states to represent 2 digits).

Many different types of data.
– Examples?

 ALL data (no matter how complex)

must be represented in memory as
binary digits (bits).

7

Number systems and computers

 Computers store all data as binary digits,
but we may need to convert this to a
number system we are familiar with.

 Computer programs and data are often
represented (outside the computer) using
octal and hexadecimal number systems
because they are a short hand way of
representing binary numbers.

8

Number Systems - Decimal

 The decimal system is a base-10 system.

 There are 10 distinct digits (0 to 9) to
represent any quantity.

 For an n-digit number, the value that each
digit represents depends on its weight or
position.

 The weights are based on powers of 10.

1024 = 1*103 + 0*102 + 2*101 + 4*100 = 1000 + 20 + 4

9

Number Systems - Binary

 The binary system is a base-2 system.

 There are 2 distinct digits (0 and 1) to
represent any quantity.

 For an n-digit number, the value of a digit
in each column depends on its position.

 The weights are based on powers of 2.

10112 = 1*23 + 0*22 + 1*21 + 1*20 =8+2+1 =1110

10

Number Systems - Octal

 Octal and hexadecimal systems provide a
shorthand way to deal with the long strings of
1‟s and 0‟s in binary.

 Octal is base-8 system using the digits 0 to 7.

 To convert to decimal, you can again use a
column weighted system

75128 = 7*83 + 5*82 + 1*81 + 2*80 = 391410

 An octal number can easily be converted to
binary by replacing each octal digit with the
corresponding group of 3 binary digits
75128 = 1111010010102

11

Number Systems - Hexadecimal

 Hexadecimal is a base-16 system.

 It contains the digits 0 to 9 and the
letters A to F (16 digit values).

 The letters A to F represent the unit
values 10 to 15.

 This system is often used in
programming as a condensed form for
binary numbers (0x00FF, 00FFh)

 To convert to decimal, use a weighted
system with powers of 16.

12

Number Systems - Hexadecimal

 Conversion to binary is done the same
way as octal to binary conversions.

 This time though the binary digits are
organised into groups of 4.

 Conversion from binary to hexadecimal
involves breaking the bits into groups of
4 and replacing them with the
hexadecimal equivalent.

13

Example #1

Value of 2001 in Binary, Octal and Hexadecimal

14

Example #2

Conversion: Binary  Octal  Hexadecimal

15

Decimal to BaseN Conversions

 To convert from decimal to a different
number base such as Octal, Binary or
Hexadecimal involves repeated division
by that number base

 Keep dividing until the quotient is zero

 Use the remainders in reverse order as
the digits of the converted number

16

Example #3
Decimal to Binary 1492 (decimal) = ??? (binary)

Repeated Divide by 2

17

BaseN to Decimal Conversions

 Multiply each digit by increasing powers of the
base value and add the terms

 Example: 101102 = ??? (decimal)

18

Data Representation

 Computers store everything as binary digits.
So, how can we encode numbers, images, sound,
text ??

 We need standard encoding systems for each
type of data.

 Some standards evolve from proprietary
products which became very popular.

 Other standards are created by official
industry bodies where none previously existed.
– Some example encoding standards are ?

19

Alphanumeric Data

 Alphanumeric data such as names and
addresses are represented by assigning a
unique binary code or sequence of bits to
represent each character.

 As each character is entered from a keyboard
(or other input device) it is converted into a
binary code.

 Character code sets contain two types of
characters:
– Printable (normal characters)

– Non-printable. Characters used as control codes.
• CTRL G (beep)
• CTRL Z (end of file)

20

Alphanumeric Codes

 There are 3 main coding methods in use:
– ASCII

– EBCDIC

– Unicode

21

ASCII

 7-bit code (128 characters)

 has an extended 8-bit version

 used on PC‟s and non-IBM mainframes

 widely used to transfer data from one
computer to another

 Examples:

22

EBCDIC

 An 8-bit code (256 characters)

 Different collating sequence to ASCII

 used on mainframe IBM machine

 Both ASCII and EBCDIC are 8 bit codes
inadequate for representing all
international characters
– Some European characters

– Most non-Alphabetic languages
eg Mandarin, Kanji, Arabic, etc…

23

Unicode

 New 16 bit standard - can represent 65,536
characters

 Of which 49,000 have been defined
– 6400 reserved for private use
– 10,000 for future expansions

 Incorporates ASCII-7
 Example - Java code:
char letter = „A‟;
char word[] = “YES”;
stores the values using Unicode characters
Java VM uses 2 bytes to store one unicode character.

0000 0000 0100 0001

0000 0000 0100 00101 0000 0000 0101 00110000 0000 0101 1001

24

Numeric Data
 Need to perform computations

 Need to represent only numbers

 Using ASCII coded digits is very inefficient

 Representation depends on nature of the
data and processing requirements
– Display purposes only (no computations): CHAR

• PRINT 125.00

– Computation involving integers: INT
• COMPUTE 16 / 3 = 5

– Computation involving fractions: FLOAT
• COMPUTE 2.001001 * 3.012301 = 6.0276173133

25

Representing Numeric Data
 Stored within the computer using one of several

different numeric representation systems

 Derived from the binary (base 2) number system.

 We can represent unsigned numbers from 0-255
just using 8 bits

 Or in general we can represent values from 0 to
2N-1 using N bits.

 The maximum value is restricted by the number of
bits available (called Truncation or Overflow)

 However, most programming languages support
manipulation of signed and fractional numbers.
– How can these be represented in binary form?

26

Representing Numeric Data

 Range of Values 0 to 2N-1 in N bits

N Range N Range

4 0 to 15 10 0 to 1023

5 0 to 31 16 0 to 65535

6 0 to 63 20 0 to 1048575

7 0 to 127 32 0 to 4294967295

8 0 to 255 64 0 to 1844674407370955165

27

Integer Representation
 UNSIGNED representing numbers from 0

upwards or SIGNED to allow for negatives.
 In the computer we only have binary digits,

so to represent negative integers we need
some sort of convention.

 Four conventions in use for representing
negative integers are:
– Sign Magnitude
– 1‟s Complement
– 2‟s Complement
– Excess 128

28

Negative Integers – Sign Magnitude

 Simplest form of representation
 In an n-bit word, the rightmost n-1 bits

hold the magnitude of the integer
 Example:

– +6 in 8-bit representation is: 00000110
– -6 in 8-bit representation is: 10000110

 Disadvantages
– arithmetic is difficult
– Two representations for zero

• 00000000
• 10000000

29

Binary Arithmetic

Addition Table

Digit Digit Sum Carry

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

30

Negative Integers – One’s (1’s) Complement

 Computers generally use a system called
“complementary representation” to store
negative integers.

 Two basic types - ones and twos
complement, of which 2‟s complement is
the most widely used.

 The number range is split into two halves,
to represent the positive and negative
numbers.

 Negative numbers begin with 1, positive
with 0.

31

Negative Integers – One’s (1’s) Complement

 To perform 1‟s complement operation on a binary number,
replace 1‟s with 0‟s and 0‟s with 1‟s (ie Complement it!)

+6 represented by: 00000110

-6 represented by: 11111001

 Advantages: arithmetic is easier (cheaper/faster electronics)

 Fairly straightforward addition

– Add any carry from the Most Significant (left-most) Bit
to Least Significant (right-most) Bit of the result

 For subtraction

– form 1‟s complement of number to be subtracted and then
add

 Disadvantages : still two representations for zero

00000000 and 11111111 (in 8-bit representation)

32

Negative Integers – Two’s (2’s) Complement

 To perform the 2‟s complement operation on a
binary number

– replace 1‟s with 0‟s and 0‟s with 1‟s (i.e. the one‟s
complement of the number)

– add 1

+6 represented by: 00000110

-6 represented by: 11111010

 Advantages:

– Arithmetic is very straightforward

– End Around Carry is ignored

 only one representation for zero (00000000)

33

Negative Integers – Two’s (2’s) Complement

Two’s Complement
–To convert an integer to 2’s complement

»Take the binary form of the number

00000110 (6 as an 8-bit representation)

»Flip the bits: (Find 1‟s Complement)

11111001

»Add 1

11111001

+1

11111010 (2‟s complement of 6)

–Justification of representation: 6+(-6)=0?

00000110 (6)

+11111010 (2’s complement of 6)

100000000 (0)

34

Negative Integers – Two’s (2’s) Complement

Properties of Two’s Complement
–The 2’s comp of a 2’s comp is the original number

00000110 (6)

11111010 (2’s comp of 6)

00000101

+1

00000110 (2’s comp of 2’s comp of 6)

–The sign of a number is given by its MSB

The bit patterns:

00000000 represents zero

0nnnnnnn represents positive numbers

1nnnnnnn represents negative numbers

35

Negative Integers – Two’s (2’s) Complement

•Addition
–Addition is performed by adding corresponding bits

00000111 (7)

+00000101 (+5)

00001100 (12)

•Subtraction
–Subtraction is performed by adding the 2’s complement

–Ignore End-Around-Carry

00001100 (12)

+11111011 (-5)

100000111 (7)

36

Negative Integers – Two’s (2’s) Complement

•Interpretation of Negative Results
00000101 (5)

+11110100 (-12)

11111001 ()

–Result is negative

MSB of result is 1 so it is a negative number in 2’s complement
form

–Negative what?

Take the 2’s comp of the result to find out since the 2’s comp
of a 2’s comp is the original number

–Negative 7

the 2’s complement of 11111001 is 00000111 or 710

37

excess 128 representation

 excess 128 for 8-bit signed numbers
(or excess 2m-1 for m-bit numbers)

 Stored as the true value plus 128
eg. –3  -3+128=125 (01111101)

26  26+128=154 (10011010)

 Number in range –128 to +127
map to bit values 0 to 255
same as 2‟s comp, but with sign bit reversed!!

38

Binary Fractions

 The Binary Point
– Digits on the left  +ve powers of 2

– Digits on the right  –ve powers of 2

16

4

2

0.5

+0.125

22.62510

0010110.101002

1 1/2 (0.5)

2 1/4 (0.25)

4 1/16 (0.125)

8 1/32 (0.0625)

16

39

Integer Overflow

40

 Problem: word size is fixed, but addition
can produce a result that is too large to fit
in the number of bits available.
This is called overflow.

 If two numbers of the same sign are added,
but the result has the opposite sign then
overflow has occurred

 Overflow can occur whether or not there is
a carry

 Examples:
01000000 (+64) 10000000 (-128)

01000001 (+65) 11000000 (-64)

10000001 (-127) 01000000 (+64)

41

Floating Point Representation
 Fractional numbers, and very large or very small

numbers can be represented with only a few
digits by using scientific notation. For example:
– 976,000,000,000,000 = 9.76 * 1014

– 0.0000000000000976 = 9.76 * 10-14

 This same approach can be used for binary
numbers. A number represented by

±M*B±E

can be stored in a binary word with three fields:
– Sign - plus or minus
– Mantissa M (often called the significand)
– Exponent E (includes exponent sign)
– The base B is generally 2 and need not be stored.

42

Floating Point Representation
 Typical 32-bit Representation

– The first bit contains the sign

– The next 8 bits contain the exponent

– The remaining 23 bits contain the mantissa

 The more bits we use for the exponent, the larger
the range of numbers available, but at the expense
of precision. We still only have a total of 232

numbers that can be represented.

 A value from a calculation may have to be rounded
to the nearest value that can be represented.

 Converting 5.75 to 32 bit IEEE format

5.75 (dec)= 101.11 (bin)

= +1.0111 * 2
+2

43

Floating Point Representation
 The only way to increase both range

and precision is to use more bits.
 with 32 bits, 232 numbers can be

represented
 with 64 bits, 264 numbers can be

represented
 Most microcomputers offer at least

single precision (32 bit) and double
precision (64 bit) numbers.

 Mainframes will have several larger
floating point formats available.

44

Floating Point Representation
 Standards

– Several floating-point representations exist
including:

• IBM System/370

• VAX

• IEEE Standard 754

 Overflow refers to values whose
magnitude is too large to be represented.

 Underflow refers to numbers whose
fractional magnitude is too small to be
represented - they are then usually
approximated by zero.

45

Floating Point Arithmetic

 (Not Examinable)

Multiplication and division involve
adding or subtracting exponents, and
multiplying the mantissas much like
for integer arithmetic.

 Addition and subtraction are more
complicated as the operands must
have the same exponent - this may
involve shifting the radix point on one
of the operands.

46

Binary Coded Decimal

 Scheme whereby each decimal digit is
represented by its 4-bit binary code

7 = 0111

246 = 001001000110

 Many CPUs provide arithmetic
instructions for operating directly on
BCD. However, calculations slower and
more difficult.

47

Boolean Representation
 Boolean or logical data type is used to

represent only two values:
– TRUE

– FALSE

 Although only one bit is needed, a single
byte often used.

 It may be represented as:
– 0016 = FALSE

– FF16 or Non-Zero = TRUE

 This data type is used with logical
operators such as comparisons = > < …

48

Programming languages and
data types
 CPU will have instructions for dealing with

limited set of data types (primitive data
types). Usually these are:
– Char

– Boolean

– Integer

– Real

– Memory addresses

 Recent processors include special
instructions to deal with multimedia data
eg MMX extension

49

Data Representation

 All languages allow programmer to
specify data as belonging to
particular data types.

 Programmers can also define special
“user defined” variable data types
such as days_of_ week

 Software can combine primitive data
types to form data structures such as
strings, arrays, records, etc…

50

Data Type Selection

 Consider the type of data and its use.

 Alphanumeric for text (eg. surname, subject name)

 Alphanumeric for numbers not used in
calculations (eg. phone number, postcode)

 One of the numeric data types for numbers

 Binary integers for whole numbers
– signed or unsigned as appropriate

 Floating point for large numbers, fractions,
or approximations in measurement

 Boolean for flags

51

(end)

52

