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and 
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Lecture Outline
Number Systems

– Binary, Octal, Hexadecimal

 Representation of characters using 
codes

 Representation of Numbers
– Integer, Floating Point, Binary Coded 

Decimal

 Program Language and Data Types
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Data Representation?
Representation = Measurement

 Most things in the “Real World” actually 
exist as a single, continuously varying 
quantity Mass, Volume, Speed, Pressure, Temperature

 Easy to measure by “representing” it 
using a different thing that varies in the 
same way Eg. Pressure as the height of column 
of mercury or as voltage produced by a pressure 
transducer

 These are ANALOG measurements
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Digital Representation

 Convert ANALOG to DIGITAL 
measurement by using a scale of units

 DIGITAL measurements
– In units – a set of symbolic values - digits

– Values larger than any symbol in the set use 
sequence of digits – Units, Tens, Hundreds…

– Measured in discrete or whole units

– Difficult to measure something that is not a 
multiple of units in size. Eg Fractions
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Analog vs. Digital representation
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Data Representation
 Computers use digital representation

 Based on a binary system 
(uses on/off states to represent 2 digits).

Many different types of data.
– Examples?

 ALL data (no matter how complex)

must be represented in memory as 
binary digits (bits).
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Number systems and computers

 Computers store all data as binary digits, 
but we may need to convert this to a 
number system we are familiar with.

 Computer programs and data are often 
represented (outside the computer) using 
octal and hexadecimal number systems 
because they are a short hand way of 
representing binary numbers. 
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Number Systems - Decimal

 The decimal system is a base-10 system.

 There are 10 distinct digits (0 to 9) to 
represent any quantity. 

 For an n-digit number, the value that each 
digit represents depends on its weight or 
position.

 The weights are based on powers of 10.

1024 = 1*103 + 0*102 + 2*101 + 4*100 = 1000 + 20 + 4
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Number Systems - Binary

 The binary system is a base-2 system.

 There are 2 distinct digits (0 and 1) to 
represent any quantity. 

 For an n-digit number, the value of a digit 
in each column depends on its position.

 The weights are based on powers of 2.

10112 = 1*23 + 0*22 + 1*21 + 1*20 =8+2+1 =1110



10

Number Systems - Octal

 Octal and hexadecimal systems provide a 
shorthand way to deal with the long strings of 
1‟s and 0‟s in binary. 

 Octal is base-8 system using the digits 0 to 7.

 To convert to decimal, you can again use a 
column weighted system

75128 = 7*83 + 5*82 + 1*81 + 2*80 = 391410

 An octal number can easily be converted to 
binary by replacing each octal digit with the 
corresponding group of 3 binary digits
75128 = 1111010010102
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Number Systems - Hexadecimal

 Hexadecimal is a base-16 system.

 It contains the digits 0 to 9 and the 
letters A to F  (16 digit values).

 The letters A to F represent the unit 
values 10 to 15. 

 This system is often used in 
programming as a condensed form for 
binary numbers  (0x00FF, 00FFh)

 To convert to decimal, use a weighted 
system with powers of 16.
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Number Systems - Hexadecimal

 Conversion to binary is done the same 
way as octal to binary conversions.

 This time though the binary digits are 
organised into groups of 4.

 Conversion from binary to hexadecimal 
involves breaking the bits into groups of 
4 and replacing them with the 
hexadecimal equivalent.
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Example #1

Value of 2001 in Binary, Octal and Hexadecimal
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Example #2

Conversion: Binary  Octal  Hexadecimal
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Decimal to BaseN Conversions

 To convert from decimal to a different 
number base such as Octal, Binary or 
Hexadecimal involves repeated division 
by that number base

 Keep dividing until the quotient is zero

 Use the remainders in reverse order as 
the digits of the converted number
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Example #3
Decimal to Binary 1492 (decimal) = ??? (binary)

Repeated Divide by 2
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BaseN to Decimal Conversions

 Multiply each digit by increasing powers of the 
base value and add the terms

 Example: 101102 = ??? (decimal)
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Data Representation

 Computers store everything as binary digits. 
So, how can we encode numbers, images, sound, 
text ?? 

 We need standard encoding systems for each 
type of data. 

 Some standards evolve from proprietary 
products which became very popular. 

 Other standards are created by official 
industry bodies where none previously existed.
– Some example encoding standards are ?
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Alphanumeric Data

 Alphanumeric data such as names and 
addresses are represented by assigning a 
unique binary code or sequence of bits to 
represent each character.  

 As each character is entered from a keyboard 
(or other input device) it is converted into a 
binary code.

 Character code sets contain two types of 
characters:
– Printable (normal characters) 

– Non-printable. Characters used as control codes. 
• CTRL G  (beep)
• CTRL Z   (end of file)
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Alphanumeric Codes

 There are 3 main coding methods in use: 
– ASCII

– EBCDIC

– Unicode
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ASCII

 7-bit code (128 characters) 

 has an extended 8-bit version 

 used on PC‟s and non-IBM mainframes

 widely used to transfer data from one 
computer to another 

 Examples:



22

EBCDIC

 An 8-bit code (256 characters)

 Different collating sequence to ASCII

 used on mainframe IBM machine

 Both ASCII and EBCDIC are 8 bit codes 
inadequate for representing all 
international characters
– Some European characters

– Most non-Alphabetic languages 
eg Mandarin, Kanji, Arabic, etc…
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Unicode

 New 16 bit standard - can represent 65,536 
characters

 Of which 49,000 have been defined
– 6400 reserved for private use
– 10,000 for future expansions

 Incorporates ASCII-7
 Example - Java code:
char letter = „A‟;
char word[ ] = “YES”;
stores the values using Unicode characters
Java VM uses 2 bytes to store one unicode character.

0000 0000 0100 0001

0000 0000 0100 00101 0000 0000 0101 00110000 0000 0101 1001
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Numeric Data
 Need to perform computations

 Need to represent only numbers

 Using ASCII coded digits is very inefficient

 Representation depends on nature of the 
data and processing requirements
– Display purposes only (no computations): CHAR

• PRINT  125.00

– Computation involving integers: INT
• COMPUTE  16  /  3  =  5

– Computation involving fractions: FLOAT
• COMPUTE  2.001001  *  3.012301  =  6.0276173133
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Representing Numeric Data
 Stored within the computer using one of several 

different numeric representation systems 

 Derived from the binary (base 2) number system. 

 We can represent unsigned numbers from 0-255 
just using 8 bits

 Or in general we can represent values from 0 to 
2N-1 using N bits. 

 The maximum value is restricted by the number of 
bits available (called Truncation or Overflow)

 However, most programming languages support 
manipulation of signed and fractional numbers. 
– How can these be represented in binary form? 
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Representing Numeric Data

 Range of Values 0 to 2N-1 in N bits

N Range N Range

4 0 to 15 10 0 to 1023

5 0 to 31 16 0 to 65535

6 0 to 63 20 0 to 1048575

7 0 to 127 32 0 to 4294967295

8 0 to 255 64 0 to 1844674407370955165
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Integer Representation
 UNSIGNED representing numbers from 0 

upwards or SIGNED to allow for negatives.
 In the computer we only have binary digits, 

so to represent negative integers we need 
some sort of convention. 

 Four conventions in use for representing 
negative integers are: 
– Sign Magnitude
– 1‟s Complement
– 2‟s Complement
– Excess 128
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Negative Integers – Sign Magnitude

 Simplest form of representation 
 In an n-bit word, the rightmost n-1 bits 

hold the magnitude of the integer
 Example:

– +6 in 8-bit representation is: 00000110
– -6 in 8-bit representation is: 10000110

 Disadvantages
– arithmetic is difficult 
– Two representations for zero

• 00000000
• 10000000
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Binary Arithmetic 

Addition Table

Digit Digit Sum Carry

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1
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Negative Integers – One’s (1’s) Complement

 Computers generally use a system called 
“complementary representation” to store 
negative integers.

 Two basic types - ones and twos 
complement, of which 2‟s complement is 
the most widely used.

 The number range is split into two halves, 
to represent the positive and negative 
numbers.

 Negative numbers begin with 1, positive 
with 0.
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Negative Integers – One’s (1’s) Complement

 To perform 1‟s complement operation on a binary number,
replace 1‟s with 0‟s and 0‟s with 1‟s (ie Complement it!)

+6 represented by:   00000110

-6 represented by:   11111001

 Advantages: arithmetic is easier (cheaper/faster electronics)

 Fairly straightforward addition

– Add any carry from the Most Significant (left-most) Bit 
to Least Significant (right-most) Bit of the result

 For subtraction 

– form 1‟s complement of number to be subtracted and then 
add

 Disadvantages : still two representations for zero

00000000 and 11111111 (in 8-bit representation)
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Negative Integers – Two’s (2’s) Complement

 To perform the 2‟s complement operation on a 
binary number

– replace 1‟s with 0‟s and 0‟s with 1‟s (i.e. the one‟s 
complement of the number) 

– add 1

+6 represented by: 00000110

-6 represented by: 11111010

 Advantages:

– Arithmetic is very straightforward

– End Around Carry is ignored

 only one representation for zero (00000000)
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Negative Integers – Two’s (2’s) Complement

Two’s Complement
–To convert an integer to 2’s complement

»Take the binary form of the number

00000110 (6 as an 8-bit representation)

»Flip the bits:  (Find 1‟s Complement)

11111001

»Add 1

11111001

+1

11111010 (2‟s complement of 6)

–Justification of representation: 6+(-6)=0?

00000110 (6)

+11111010 (2’s complement of 6)

100000000 (0)
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Negative Integers – Two’s (2’s) Complement

Properties of Two’s Complement
–The 2’s comp of a 2’s comp is the original number

00000110 (6)

11111010 (2’s comp of 6)

00000101 

+1

00000110 (2’s comp of 2’s comp of 6)

–The sign of a number is given by its MSB

The bit patterns:

00000000 represents zero

0nnnnnnn represents positive numbers

1nnnnnnn represents negative numbers
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Negative Integers – Two’s (2’s) Complement

•Addition
–Addition is performed by adding corresponding bits

00000111 ( 7)

+00000101 (+5)

00001100 (12)

•Subtraction
–Subtraction is performed by adding the 2’s complement

–Ignore End-Around-Carry

00001100 (12)

+11111011 (-5)

100000111 ( 7)
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Negative Integers – Two’s (2’s) Complement

•Interpretation of Negative Results
00000101 (  5)

+11110100 (-12)

11111001 ( )

–Result is negative

MSB of result is 1 so it is a negative number in 2’s complement 
form

–Negative what?

Take the 2’s comp of the result to find out since the 2’s comp 
of a 2’s comp is the original number

–Negative 7

the 2’s complement of 11111001 is 00000111 or 710
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excess 128 representation

 excess 128 for 8-bit signed numbers
(or excess 2m-1 for m-bit numbers)

 Stored as the true value plus 128
eg. –3  -3+128=125 (01111101)

26  26+128=154 (10011010)

 Number in range –128 to +127 
map to bit values    0  to 255
same as 2‟s comp, but with sign bit reversed!!



38

Binary Fractions

 The Binary Point
– Digits on the left    +ve powers of 2

– Digits on the right  –ve powers of 2

16

4

2

0.5

+0.125

22.62510

0010110.101002

1 1/2 (0.5)

2   1/4 (0.25)

4     1/16 (0.125)

8       1/32 (0.0625)

16     
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Integer Overflow
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 Problem: word size is fixed, but addition 
can produce a result that is too large to fit 
in the number of bits available.
This is called overflow.

 If two numbers of the same sign are added, 
but the result has the opposite sign then 
overflow has occurred

 Overflow can occur whether or not there is 
a carry

 Examples:
01000000 ( +64)  10000000 (-128)

01000001 ( +65)  11000000 ( -64)

10000001 (-127)  01000000 ( +64)
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Floating Point Representation 
 Fractional numbers, and very large or very small 

numbers can be represented with only a few 
digits by using scientific notation. For example:
– 976,000,000,000,000   = 9.76 * 1014

– 0.0000000000000976  = 9.76 * 10-14

 This same approach can be used for binary 
numbers. A number represented by 

±M*B±E

can be stored in a binary word with three fields:
– Sign - plus or minus
– Mantissa M (often called the significand)
– Exponent E (includes exponent sign)
– The base B is generally 2 and need not be stored.
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Floating Point Representation 
 Typical 32-bit Representation

– The first bit contains the sign

– The next  8 bits contain the exponent

– The remaining 23 bits contain the mantissa

 The more bits we use for the exponent, the larger 
the range of numbers available, but at the expense 
of precision.  We still only have a total of 232

numbers that can be represented.

 A value from a calculation may have to be rounded 
to the nearest value that can be represented.

 Converting 5.75 to 32 bit IEEE format

5.75 (dec)= 101.11 (bin)

= +1.0111 * 2
+2
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Floating Point Representation 
 The only way to increase both range 

and precision is to use more bits.
 with 32 bits, 232 numbers can be 

represented
 with 64 bits, 264 numbers can be 

represented 
 Most microcomputers offer at least 

single precision (32 bit) and double 
precision (64 bit) numbers.

 Mainframes will have several larger 
floating point formats available. 
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Floating Point Representation 
 Standards

– Several floating-point representations exist 
including:

• IBM System/370

• VAX

• IEEE Standard 754

 Overflow refers to values whose 
magnitude is too large to be represented.

 Underflow refers to numbers whose 
fractional magnitude is too small to be 
represented - they are then usually 
approximated by zero.
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Floating Point Arithmetic 

 (Not Examinable)

Multiplication and division involve 
adding or subtracting exponents, and 
multiplying the mantissas much like 
for integer arithmetic.

 Addition and subtraction are more 
complicated as the operands must 
have the same exponent - this may 
involve shifting the radix point on one 
of the operands.
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Binary Coded Decimal 

 Scheme whereby each decimal digit is 
represented by its 4-bit binary code

7 =  0111

246 =  001001000110

 Many CPUs provide arithmetic 
instructions for operating directly on 
BCD. However, calculations slower and 
more difficult. 
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Boolean Representation 
 Boolean or logical data type is used to 

represent only two values:
– TRUE

– FALSE

 Although only one bit is needed, a single 
byte often used.  

 It may be represented as:
– 0016 = FALSE

– FF16 or Non-Zero = TRUE  

 This data type is used with logical 
operators such as comparisons  = > < …
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Programming languages and 
data types
 CPU will have instructions for dealing with 

limited set of data types (primitive data 
types).  Usually these are:
– Char  

– Boolean  

– Integer

– Real 

– Memory addresses

 Recent processors include special 
instructions to deal with multimedia data 
eg MMX extension
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Data Representation

 All languages allow programmer to 
specify data as belonging to 
particular data types. 

 Programmers can also define special 
“user defined” variable data types 
such as days_of_ week

 Software can combine primitive data 
types to form data structures such as 
strings, arrays, records, etc…
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Data Type Selection

 Consider the type of data and its use.

 Alphanumeric for text (eg. surname, subject name)

 Alphanumeric for numbers not used in 
calculations (eg. phone number, postcode)

 One of the numeric data types for numbers

 Binary integers for whole numbers
– signed or unsigned as appropriate

 Floating point for large numbers, fractions, 
or approximations in measurement

 Boolean for flags
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(end)
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