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Lecture Outline

= Number Systems
- Binary, Octal, Hexadecimal

= Representation of characters using
codes

= Representation of Numbers

- Integer, Floating Point, Binary Coded
Decimal

= Program Language and Data Types




Data Representation?

Representation = Measurement

m Most things in the "Real World” actually
exist as a single, continuously varying
qu anti '|'y Mass, Volume, Speed, Pressure, Temperature

= Easy to measure by “representing” it
using a different thing that varies in the

same way E£g. Pressure as the height of column
of mercury or as voltage produced by a pressure
transducer

m These are ANALOG measurements




Digital Representation

m Convert ANALOG to DIGITAL
measurement by using a scale of units

m DIGITAL measurements

- In units - a set of symbolic values - digits

- Values larger than any symbol in the set use
sequence of digits - Units, Tens, Hundreds...

- Measured in discrete or whole units

- Difficult to measure something that is not a
multiple of units in size. £g Fractions




Analog vs. Digital representation
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Data Representation

m Computers use digital representation

= Based on a binary system

(uses on/off states to represent 2 digits).
= Many different types of data.

— Examples?
m ALL data (no matter how complex)

must be represented in memory as
binary digits (bits).




Number systems and computers

m Computers store all data as binary digits,
but we may need to convert this to a
number system we are familiar with.

m Computer programs and data are often
represented (outside the computer) using
octal and hexadecimal number systems
because they are a short hand way of
representing binary numbers.




Number Systems - Decimal

m The decimal system is a base-10 system.

® There are 10 distinct digits (O to 9) to
represent any quantity.

= For an n-digit number, the value that each
digit represents depends on its weight or
position.

m The weights are based on powers of 10.

1024 = 1*103 + 07107+ 2*10' + 4*10° = 1000 + 20 + 4




Number Systems - Binary

m The binary system is a base-2 system.

m There are 2 distinct digits (0 and 1) to
represent any quantity.

m For an n-digit number, the value of a digit
in each column depends on its position.

m The weights are based on powers of 2.

1011, = 1*23 + 0%22 + 1*21 + 1*20 =8+2+1 =11,




Number Systems - Octal

® Octal and hexadecimal systems provide a
shorthand way to deal with the long strings of
I's and O's in binary.

m Octal is base-8 system using the digits O to 7.

m To convert to decimal, you can again use a
column weighted system

7512, = 7*83 + 5*82 + 1*8! + 2*80 = 3914,

m An octal number can easily be converted to
binary by replacing each octal digit with the
corresponding group of 3 binary digits
7512, = 111101001010,
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Number Systems - Hexadecimal

m Hexadecimal is a base-16 system.

m Tt contains the digits O to 9 and the
letters A to F (16 digit values).

m The letters A to F represent the unit
values 10 1o 15.

m This system is often used in
programming as a condensed form for
binary numbers (0xOOFF, OOFFh)

= To convert to decimal, use a weighted
system with powers of 16.
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Number Systems - Hexadecimal

m Conversion to binary is done the same
way as octal to binary conversions.

m This time though the binary digits are
organised into groups of 4.

m Conversion from binary to hexadecimal
involves breaking the bits into groups of
4 and replacing them with the
hexadecimal equivalent.
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xample #1

Value of 2001 in Binary, Octal and Hexadecimal

Binary 1 1 1 1 1 0 1 0 0 0 1

Ix210 41 %29 +1x28+1x27 +1x28+0x25+1x2%+0x22+0x2+0x2"+1x2°
1024 + 512 + 256 + 128 + 64 +0 +16 +0 +0 +0 +1

QOctal 3 ré 2 1

3x83+7x82+2x8"+1x8°
1536 + 448 + 16 +1
Decimal 2 0 0 1
2x10%+0x10%2+0x10" +1 x10°
2000 +0 +0 + 1
Hexadecimal 7 D 1
7%x162+13x16" + 1 x16°
1792 + 208 + 1
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xdampie 1

Hexadecimal

Example 2

Hexadecimal

Binary

Octal

xample #2

Conversion: Binary < Octal <& Hexadecimal

7 B A 3 . B C 4

e s T e R i e T can W
101110100011.101111000100
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Decimal to Basey, Conversions

® To convert from decimal to a different
number base such as Octal, Binary or
Hexadecimal involves repeated division
by that number base

m Keep dividing until the quotient is zero

m Use the remainders in reverse order as
the digits of the converted number
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Example #3

Decimal to Binary 1492 (decimal) = ??? (binary)
Repeated Divide by 2

Quotients Remainders

S

746

373

186

93

46
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10111010100 =1492,




Basey to Decimal Conversions

= Multiply each digit by increasing powers of the
base value and add the terms

m Example: 10110, = ??? (decimal)
10110,= 0*2'= 0

%1*2: 2
1*2°= 4
0*2°= 0

1*2'- 16
22

10
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Data Representation

m Computers store everything as binary digits.
So, how can we encode numbers, images, sound,
text ??

® We need standard encoding systems for each
type of data.

® Some standards evolve from proprietary
products which became very popular.

® Other standards are created by official
industry bodies where none previously existed.
- Some example encoding standards are ?
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Alphanumeric Data

= Alphanumeric data such as names and
addresses are represented by assigning a
unique binary code or sequence of bits to
represent each character.

® As each character is entered from a keyboard
(or other input device) it is converted into a
binary code.

® Character code sets contain two types of
characters:
- Printable (normal characters)

- Non-printable. Characters used as control codes.
+ CTRL G (beep)
- CTRL Z (end of file)
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Alphanumeric Codes

m There are 3 main coding methods in use:
— ASCII
— EBCDIC
— Unicode
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ASCII

m 7-bit code (128 characters)
® has an extended 8-bit version
m used on PC's and non-IBM mainframes

m widely used to transfer data from one
computer to another

m Examples:
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EBCDIC

® An 8-bit code (256 characters)
m Different collating sequence to ASCIT

m used on mainframe IBM machine

m Both ASCII and EBCDIC are 8 bit codes
inadequate for representing all
international characters

- Some European characters

- Most non-Alphabetic languages
eg Mandarin, Kanji, Arabic, etc...
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Unicode

= New 16 bit standard - can represent 65,536
characters

= Of which 49,000 have been defined

- 6400 reserved for private use
- 10,000 for future expansions

m Incorporates ASCII-/
O Example - Java code:

char letter = 'A’;

char word[ ] = "YES";
stores the values using Unicode characters
Java VM uses 2 bytes to store one unicode character.

0000 0000

0100 0001

0000 0000

0101 1001

0000 0000

0100 00101

0000 0000

0101 0011
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Numeric Data

= Need to perform computations
= Need to represent only numbers
m Using ASCII coded digits is very inefficient

m Representation depends on nature of the
data and processing requirements

- Display purposes only (ho computations): CHAR
- PRINT 125.00

- Computation involving integers: INT
- COMPUTE 16 / 3 = 5

- Computation involving fractions: FLOAT
- COMPUTE 2.001001 * 3.012301 = 6.0276173133
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Representing Numeric Data

Stored within the computer using one of several
different numeric representation systems

Derived from the binary (base 2) number system.

We can represent unsigned numbers from 0-255
just using 8 bits

Or in general we can represent values from O to
2N-1 using N bits.

The maximum value is restricted by the number of
bits available (called Truncation or Overflow)

However, most programming languages support
manipulation of signed and fractional numbers.
- How can these be represented in binary form?
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Representing Numeric Data

m Range of Values 0 to 2N-1 in N bits

Range

N

Range

0Oto 15

10

0 to 1023

0to 31

16

0 to 65535

0 to 63

20

0 to 1048575

Oto 127

32

0 to 4294967295

ol NN~ Z

0 to 255

64

0 to 184467440/7/370955165
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Integer Representation

m UNSIGNED representing numbers from O
upwards or SIGNED to allow for negatives.

m In the computer we only have binary digits,
so to represent negative integers we need
some sort of convention.

m Four conventions in use for representing
hegative integers are:

- Sigh Magnitude
- I's Complement
- 2's Complement
- Excess 128
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Negative Integers - Sign Magnitude

m Simplest form of representation

® Inan n-bit word, the rightmost n-1 bits
hold the magnitude of the integer

= Example:
- +6 in 8-bit representation is: 00000110
- -6 in 8-bit representation is: 10000110

= Disadvantages
- arithmetic is difficult

- Two representations for zero
- 00000000
- 10000000
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Binary Arithmetic

Addition Table

Digit | Digit | Sum | Carry
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1
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Negative Integers - One's (1's) Complement

= Computers generally use a system called
“complementary representation” to store
hegative integers.

= Two basic types - ones and twos
complement, of which 2's complement is
the most widely used.

= The number range is split into two halves,
to represent the positive and negative
humbers.

= Negative numbers begin with 1, positive
with O.
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Negative Integers - One's (1's) Complement

m To perform 1's complement operation on a binary number,
replace 1's with O's and O's with 1's (ie Complement itl)

+6 represented by: 00000110
-6 represented by: 11111001
= Advantages: arithmetic is easier (cheaper/faster electronics)
= Fairly straightforward addition
- Add any carry from the Most Significant (left-most) Bit
to Least Significant (right-most) Bit of the result
= For subtraction

- form 1's complement of number to be subtracted and then
add

m Disadvantages : still two representations for zero
00000000 and 11111111 (in 8-bit representation)
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Negative Integers - Two's (2's) Complement

m To perform the 2's complement operation on a
binary number

- replace 1's with O's and O's with 1's (i.e. the one's
complement of the number)

- add 1
+6 represented by: 00000110
-6 represented by: 11111010
= Advantages:
- Arithmetic is very straightforward
- End Around Carry is ignored
= only one representation for zero (00000000)
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Negative Integers - Two's (2's) Complement

Two's Complement
-To convert an integer to 2's complement

»Take the binary form of the number
00000110 (6 as an 8-bit representation)

»Flip the bits: (Find 1's Complement)

11111001
»Add 1
11111001
+1
11111010 (2's complement of 6)

-Justification of representation: 6+(-6)=0?
00000110 (6)
+11111010 (2's complement of 6)
100000000 (0)
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Negative Integers - Two's (2's) Complement

Properties of Two's Complement

-The 2's comp of a 2's comp is the original number
00000110 (6)
11111010 (2's comp of 6)
00000101

+1

00000110 (2's comp of 2's comp of 6)

-The sign of a number is given by its MSB
The bit patterns:
00000000 represents zero
Onnnnnnn represents positive numbers
lnnnnnnn represents negative numbers
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Negative Integers - Two's (2's) Complement

-Addition
-Addition is performed by adding corresponding bits
00000111 (7)
+00000101 (+5)
00001100 (12)

-Subtraction
-Subtraction is performed by adding the 2's complement
-Ignore End-Around-Carry
00001100 (12)
+11111011 (=5)
100000111 ( 7)
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Negative Integers - Two's (2's) Complement

‘Interpretation of Negative Results
00000101 ( 5)
+11110100 (-12)
11111001 ( __)

-Result is negative

MSB of result is 1 so it is a negative number in 2's complement
form

-Negative what?

Take the 2's comp of the result to find out since the 2's comp
of a 2's comp is the original number

-Negative 7
the 2's complement of 11111001 is 00000111 or 7,,

36



excess 128 representation

m excess 128 for 8-bit signed numbers
(or excess 2™ for m-bit numbers)

m Stored as the true value plus 128
eg. —3 = -3+128=125 (01111101
206 => 26+128=154 (10011010)

= Number in range -128 to +127
map to bit values 0O to 255

same as 2's comp, but with sign bit reversedl|
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Binary Fractions

m The Binary Point
- Digits on the left — +ve powers of 2
- Digits on the right = -ve powers of 2

OOlOll({.llOlOO2 12
1 /5 (0.5 2
/4 (0.25) 0.5
4 /16 (0.125) a2
8 /32 (0.0625) 22- 62550
16
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Integer Overflow

39



= Problem: word size is fixed, but addition
can produce a result that is too large to fit
in The number of bits available.
This is called overflow.

= If two numbers of the same sign are added,
but the result has the opposite sign then
overflow has occurred

m Overflow can occur whether or not there is
a carry

= Examples:
01000000 ( +64) 10000000 (-128)
01000001 (_+65) 11000000 (_—-64)

10000001 (-127) 01000000 ( +64)
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Floating Point Representation

m Fractional numbers, and very large or very small
numbers can be represented with only a few
digits by using scientific notation. For example:

- 976,000,000,000,000 =9.76 * 104
- 0.0000000000000976 =9.76 * 10-14

= This same approach can be used for binary
numbers. A number represented by
+M*B+E
can be stored in a binary word with three fields:
- Sign - plus or minus
- Mantissa M (often called the significand)
- Exponent E (includes exponent sign)
- The base B is generally 2 and need not be stored.
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Floating Point Representation

m Typical 32-bit Representation
- The first bit contains the sign
- The next 8 bits contain the exponent
- The remaining 23 bits contain the mantissa

m The more bits we use for the exponent, the larger
the range of numbers available, but at the expense
of precision. We still only have a total of 232
numbers that can be represented.

= A value from a calculation may have to be rounded
to the nearest value that can be represented.

m Converting 5.75 to 32 bit IEEE format
5.75 (dec)= 101.11 (bin)

+2

=+1.0111* 2
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Floating Point Representation

= The only way to increase both range
and precision is o use more bits.

m with 32 bits, 232 numbers can be
represented

= with 64 bits, 24 numbers can be
represented

® Most microcomputers offer at least
single precision (32 bit) and double
precision (64 bit) numbers.

= Mainframes will have several larger
floating point formats available.
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Floating Point Representation

m Standards

- Several floating-point representations exist
including:
+ IBM System/370
- VAX
- TEEE Standard 754
= Overflow refers to values whose

maghitude is too large to be represented.

= Underflow refers to numbers whose
fractional magnitude is too small to be
represented - they are then usually
approximated by zero.
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Floating Point Arithmetic

m (Not Examinable)

= Multiplication and division involve
adding or subtracting exponents, and
multiplying the mantissas much like
for integer arithmetic.

m Addition and subtraction are more
complicated as the operands must
have the same exponent - this may
involve shifting the radix point on one
of the operands.
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Binary Coded Decimal

m Scheme whereby each decimal digit is
represented by its 4-bit binary code

/= 0111

246 = 001001000110

® Many CPUs provide arithmetic
instructions for operating directly on

BCD. However, calculations slower and
more difficult.
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Boolean Representation

= Boolean or logical data type is used to
represent only two values:
- TRUE
- FALSE

= Although only one bit is needed, a single
byte often used.

= It may be represented as:
- 00,, = FALSE
- FF,, or Non-Zero = TRUE

m This data type is used with logical
operators such as comparisons =>< ...
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Programming languages and
data types

m CPU will have instructions for dealing with
limited set of data types (primitive data
types). Usually these are:

- Char

- Boolean

- Integer

- Readl

- Memory addresses

m Recent processors include special

instructions to deal with multimedia data
eg MMX extension
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Data Representation

= All languages allow programmer to
specify data as belonging to
particular data types.

® Programmers can also define special
"user defined" variable data types
such as days_of_ week

m Software can combine primitive data
types to form data structures such as
strings, arrays, records, etc...
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Data Type Selection

m Consider the type of data and its use.
u Alphanumeric for text (eg. surname, subject name)

m Alphanumeric for numbers not used in
calculations (eg. phone number, postcode)

® One of the numeric data types for numbers

m Binary integers for whole numbers
- signed or unsigned as appropriate

m Floating point for large numbers, fractions,
or approximations in measurement

m Boolean for flags
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(end)






