Number Systems
and

Data Representation

Lecture Outline

= Number Systems
- Binary, Octal, Hexadecimal

= Representation of characters using
codes

= Representation of Numbers

- Integer, Floating Point, Binary Coded
Decimal

= Program Language and Data Types

Data Representation?

Representation = Measurement

m Most things in the "Real World” actually
exist as a single, continuously varying
qu anti '|'y Mass, Volume, Speed, Pressure, Temperature

= Easy to measure by “representing” it
using a different thing that varies in the

same way E£g. Pressure as the height of column
of mercury or as voltage produced by a pressure
transducer

m These are ANALOG measurements

Digital Representation

m Convert ANALOG to DIGITAL
measurement by using a scale of units

m DIGITAL measurements

- In units - a set of symbolic values - digits

- Values larger than any symbol in the set use
sequence of digits - Units, Tens, Hundreds...

- Measured in discrete or whole units

- Difficult to measure something that is not a
multiple of units in size. £g Fractions

Analog vs. Digital representation

7N
i)
.
3/4? ?5\\\\

Data Representation

m Computers use digital representation

= Based on a binary system

(uses on/off states to represent 2 digits).
= Many different types of data.

— Examples?
m ALL data (no matter how complex)

must be represented in memory as
binary digits (bits).

Number systems and computers

m Computers store all data as binary digits,
but we may need to convert this to a
number system we are familiar with.

m Computer programs and data are often
represented (outside the computer) using
octal and hexadecimal number systems
because they are a short hand way of
representing binary numbers.

Number Systems - Decimal

m The decimal system is a base-10 system.

® There are 10 distinct digits (O to 9) to
represent any quantity.

= For an n-digit number, the value that each
digit represents depends on its weight or
position.

m The weights are based on powers of 10.

1024 = 1*103 + 07107+ 2*10' + 4*10° = 1000 + 20 + 4

Number Systems - Binary

m The binary system is a base-2 system.

m There are 2 distinct digits (0 and 1) to
represent any quantity.

m For an n-digit number, the value of a digit
in each column depends on its position.

m The weights are based on powers of 2.

1011, = 1*23 + 0%22 + 1*21 + 1*20 =8+2+1 =11,

Number Systems - Octal

® Octal and hexadecimal systems provide a
shorthand way to deal with the long strings of
I's and O's in binary.

m Octal is base-8 system using the digits O to 7.

m To convert to decimal, you can again use a
column weighted system

7512, = 7*83 + 5*82 + 1*8! + 2*80 = 3914,

m An octal number can easily be converted to
binary by replacing each octal digit with the
corresponding group of 3 binary digits
7512, = 111101001010,

10

Number Systems - Hexadecimal

m Hexadecimal is a base-16 system.

m Tt contains the digits O to 9 and the
letters A to F (16 digit values).

m The letters A to F represent the unit
values 10 1o 15.

m This system is often used in
programming as a condensed form for
binary numbers (0xOOFF, OOFFh)

= To convert to decimal, use a weighted
system with powers of 16.

11

Number Systems - Hexadecimal

m Conversion to binary is done the same
way as octal to binary conversions.

m This time though the binary digits are
organised into groups of 4.

m Conversion from binary to hexadecimal
involves breaking the bits into groups of
4 and replacing them with the
hexadecimal equivalent.

12

xample #1

Value of 2001 in Binary, Octal and Hexadecimal

Binary 1 1 1 1 1 0 1 0 0 0 1

Ix210 41 %29 +1x28+1x27 +1x28+0x25+1x2%+0x22+0x2+0x2"+1x2°
1024 + 512 + 256 + 128 + 64 +0 +16 +0 +0 +0 +1

QOctal 3 ré 2 1

3x83+7x82+2x8"+1x8°
1536 + 448 + 16 +1
Decimal 2 0 0 1
2x10%+0x10%2+0x10" +1 x10°
2000 +0 +0 + 1
Hexadecimal 7 D 1
7%x162+13x16" + 1 x16°
1792 + 208 + 1

13

xdampie 1

Hexadecimal

Example 2

Hexadecimal

Binary

Octal

xample #2

Conversion: Binary < Octal <& Hexadecimal

7 B A 3 . B C 4

e s T e R i e T can W
101110100011.101111000100

14

Decimal to Basey, Conversions

® To convert from decimal to a different
number base such as Octal, Binary or
Hexadecimal involves repeated division
by that number base

m Keep dividing until the quotient is zero

m Use the remainders in reverse order as
the digits of the converted number

15

Example #3

Decimal to Binary 1492 (decimal) = ??? (binary)
Repeated Divide by 2

Quotients Remainders

S

746

373

186

93

46

11

0
o)
1
0
1
23 0
1
1
1
0
1

o =+ N

llVVVVVVVVV

10111010100 =1492,

Basey to Decimal Conversions

= Multiply each digit by increasing powers of the
base value and add the terms

m Example: 10110, = ??? (decimal)
10110,= 0*2'= 0

%1*2: 2
1*2°= 4
0*2°= 0

1*2'- 16
22

10

17

Data Representation

m Computers store everything as binary digits.
So, how can we encode numbers, images, sound,
text ??

® We need standard encoding systems for each
type of data.

® Some standards evolve from proprietary
products which became very popular.

® Other standards are created by official
industry bodies where none previously existed.
- Some example encoding standards are ?

18

Alphanumeric Data

= Alphanumeric data such as names and
addresses are represented by assigning a
unique binary code or sequence of bits to
represent each character.

® As each character is entered from a keyboard
(or other input device) it is converted into a
binary code.

® Character code sets contain two types of
characters:
- Printable (normal characters)

- Non-printable. Characters used as control codes.
+ CTRL G (beep)
- CTRL Z (end of file)

19

Alphanumeric Codes

m There are 3 main coding methods in use:
— ASCII
— EBCDIC
— Unicode

20

ASCII

m 7-bit code (128 characters)
® has an extended 8-bit version
m used on PC's and non-IBM mainframes

m widely used to transfer data from one
computer to another

m Examples:

21

EBCDIC

® An 8-bit code (256 characters)
m Different collating sequence to ASCIT

m used on mainframe IBM machine

m Both ASCII and EBCDIC are 8 bit codes
inadequate for representing all
international characters

- Some European characters

- Most non-Alphabetic languages
eg Mandarin, Kanji, Arabic, etc...

22

Unicode

= New 16 bit standard - can represent 65,536
characters

= Of which 49,000 have been defined

- 6400 reserved for private use
- 10,000 for future expansions

m Incorporates ASCII-/
O Example - Java code:

char letter = 'A’;

char word[] = "YES";
stores the values using Unicode characters
Java VM uses 2 bytes to store one unicode character.

0000 0000

0100 0001

0000 0000

0101 1001

0000 0000

0100 00101

0000 0000

0101 0011

23

Numeric Data

= Need to perform computations
= Need to represent only numbers
m Using ASCII coded digits is very inefficient

m Representation depends on nature of the
data and processing requirements

- Display purposes only (ho computations): CHAR
- PRINT 125.00

- Computation involving integers: INT
- COMPUTE 16 / 3 = 5

- Computation involving fractions: FLOAT
- COMPUTE 2.001001 * 3.012301 = 6.0276173133

24

Representing Numeric Data

Stored within the computer using one of several
different numeric representation systems

Derived from the binary (base 2) number system.

We can represent unsigned numbers from 0-255
just using 8 bits

Or in general we can represent values from O to
2N-1 using N bits.

The maximum value is restricted by the number of
bits available (called Truncation or Overflow)

However, most programming languages support
manipulation of signed and fractional numbers.
- How can these be represented in binary form?

25

Representing Numeric Data

m Range of Values 0 to 2N-1 in N bits

Range

N

Range

0Oto 15

10

0 to 1023

0to 31

16

0 to 65535

0 to 63

20

0 to 1048575

Oto 127

32

0 to 4294967295

ol NN~ Z

0 to 255

64

0 to 184467440/7/370955165

26

Integer Representation

m UNSIGNED representing numbers from O
upwards or SIGNED to allow for negatives.

m In the computer we only have binary digits,
so to represent negative integers we need
some sort of convention.

m Four conventions in use for representing
hegative integers are:

- Sigh Magnitude
- I's Complement
- 2's Complement
- Excess 128

27

Negative Integers - Sign Magnitude

m Simplest form of representation

® Inan n-bit word, the rightmost n-1 bits
hold the magnitude of the integer

= Example:
- +6 in 8-bit representation is: 00000110
- -6 in 8-bit representation is: 10000110

= Disadvantages
- arithmetic is difficult

- Two representations for zero
- 00000000
- 10000000

28

Binary Arithmetic

Addition Table

Digit | Digit | Sum | Carry
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

29

Negative Integers - One's (1's) Complement

= Computers generally use a system called
“complementary representation” to store
hegative integers.

= Two basic types - ones and twos
complement, of which 2's complement is
the most widely used.

= The number range is split into two halves,
to represent the positive and negative
humbers.

= Negative numbers begin with 1, positive
with O.

30

Negative Integers - One's (1's) Complement

m To perform 1's complement operation on a binary number,
replace 1's with O's and O's with 1's (ie Complement itl)

+6 represented by: 00000110
-6 represented by: 11111001
= Advantages: arithmetic is easier (cheaper/faster electronics)
= Fairly straightforward addition
- Add any carry from the Most Significant (left-most) Bit
to Least Significant (right-most) Bit of the result
= For subtraction

- form 1's complement of number to be subtracted and then
add

m Disadvantages : still two representations for zero
00000000 and 11111111 (in 8-bit representation)

31

Negative Integers - Two's (2's) Complement

m To perform the 2's complement operation on a
binary number

- replace 1's with O's and O's with 1's (i.e. the one's
complement of the number)

- add 1
+6 represented by: 00000110
-6 represented by: 11111010
= Advantages:
- Arithmetic is very straightforward
- End Around Carry is ignored
= only one representation for zero (00000000)

32

Negative Integers - Two's (2's) Complement

Two's Complement
-To convert an integer to 2's complement

»Take the binary form of the number
00000110 (6 as an 8-bit representation)

»Flip the bits: (Find 1's Complement)

11111001
»Add 1
11111001
+1
11111010 (2's complement of 6)

-Justification of representation: 6+(-6)=0?
00000110 (6)
+11111010 (2's complement of 6)
100000000 (0)

33

Negative Integers - Two's (2's) Complement

Properties of Two's Complement

-The 2's comp of a 2's comp is the original number
00000110 (6)
11111010 (2's comp of 6)
00000101

+1

00000110 (2's comp of 2's comp of 6)

-The sign of a number is given by its MSB
The bit patterns:
00000000 represents zero
Onnnnnnn represents positive numbers
lnnnnnnn represents negative numbers

34

Negative Integers - Two's (2's) Complement

-Addition
-Addition is performed by adding corresponding bits
00000111 (7)
+00000101 (+5)
00001100 (12)

-Subtraction
-Subtraction is performed by adding the 2's complement
-Ignore End-Around-Carry
00001100 (12)
+11111011 (=5)
100000111 (7)

35

Negative Integers - Two's (2's) Complement

‘Interpretation of Negative Results
00000101 (5)
+11110100 (-12)
11111001 (__)

-Result is negative

MSB of result is 1 so it is a negative number in 2's complement
form

-Negative what?

Take the 2's comp of the result to find out since the 2's comp
of a 2's comp is the original number

-Negative 7
the 2's complement of 11111001 is 00000111 or 7,,

36

excess 128 representation

m excess 128 for 8-bit signed numbers
(or excess 2™ for m-bit numbers)

m Stored as the true value plus 128
eg. —3 = -3+128=125 (01111101
206 => 26+128=154 (10011010)

= Number in range -128 to +127
map to bit values 0O to 255

same as 2's comp, but with sign bit reversedl|

37

Binary Fractions

m The Binary Point
- Digits on the left — +ve powers of 2
- Digits on the right = -ve powers of 2

OOlOll({.llOlOO2 12
1 /5 (0.5 2
/4 (0.25) 0.5
4 /16 (0.125) a2
8 /32 (0.0625) 22- 62550
16

38

Integer Overflow

39

= Problem: word size is fixed, but addition
can produce a result that is too large to fit
in The number of bits available.
This is called overflow.

= If two numbers of the same sign are added,
but the result has the opposite sign then
overflow has occurred

m Overflow can occur whether or not there is
a carry

= Examples:
01000000 (+64) 10000000 (-128)
01000001 (_+65) 11000000 (_—-64)

10000001 (-127) 01000000 (+64)

40

Floating Point Representation

m Fractional numbers, and very large or very small
numbers can be represented with only a few
digits by using scientific notation. For example:

- 976,000,000,000,000 =9.76 * 104
- 0.0000000000000976 =9.76 * 10-14

= This same approach can be used for binary
numbers. A number represented by
+M*B+E
can be stored in a binary word with three fields:
- Sign - plus or minus
- Mantissa M (often called the significand)
- Exponent E (includes exponent sign)
- The base B is generally 2 and need not be stored.

41

Floating Point Representation

m Typical 32-bit Representation
- The first bit contains the sign
- The next 8 bits contain the exponent
- The remaining 23 bits contain the mantissa

m The more bits we use for the exponent, the larger
the range of numbers available, but at the expense
of precision. We still only have a total of 232
numbers that can be represented.

= A value from a calculation may have to be rounded
to the nearest value that can be represented.

m Converting 5.75 to 32 bit IEEE format
5.75 (dec)= 101.11 (bin)

+2

=+1.0111* 2

42

Floating Point Representation

= The only way to increase both range
and precision is o use more bits.

m with 32 bits, 232 numbers can be
represented

= with 64 bits, 24 numbers can be
represented

® Most microcomputers offer at least
single precision (32 bit) and double
precision (64 bit) numbers.

= Mainframes will have several larger
floating point formats available.

43

Floating Point Representation

m Standards

- Several floating-point representations exist
including:
+ IBM System/370
- VAX
- TEEE Standard 754
= Overflow refers to values whose

maghitude is too large to be represented.

= Underflow refers to numbers whose
fractional magnitude is too small to be
represented - they are then usually
approximated by zero.

44

Floating Point Arithmetic

m (Not Examinable)

= Multiplication and division involve
adding or subtracting exponents, and
multiplying the mantissas much like
for integer arithmetic.

m Addition and subtraction are more
complicated as the operands must
have the same exponent - this may
involve shifting the radix point on one
of the operands.

45

Binary Coded Decimal

m Scheme whereby each decimal digit is
represented by its 4-bit binary code

/= 0111

246 = 001001000110

® Many CPUs provide arithmetic
instructions for operating directly on

BCD. However, calculations slower and
more difficult.

46

Boolean Representation

= Boolean or logical data type is used to
represent only two values:
- TRUE
- FALSE

= Although only one bit is needed, a single
byte often used.

= It may be represented as:
- 00,, = FALSE
- FF,, or Non-Zero = TRUE

m This data type is used with logical
operators such as comparisons =>< ...

47

Programming languages and
data types

m CPU will have instructions for dealing with
limited set of data types (primitive data
types). Usually these are:

- Char

- Boolean

- Integer

- Readl

- Memory addresses

m Recent processors include special

instructions to deal with multimedia data
eg MMX extension

48

Data Representation

= All languages allow programmer to
specify data as belonging to
particular data types.

® Programmers can also define special
"user defined" variable data types
such as days_of_ week

m Software can combine primitive data
types to form data structures such as
strings, arrays, records, etc...

49

Data Type Selection

m Consider the type of data and its use.
u Alphanumeric for text (eg. surname, subject name)

m Alphanumeric for numbers not used in
calculations (eg. phone number, postcode)

® One of the numeric data types for numbers

m Binary integers for whole numbers
- signed or unsigned as appropriate

m Floating point for large numbers, fractions,
or approximations in measurement

m Boolean for flags

50

(end)

