
1

Assemblers, Linkers & Loaders

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: Library routine (machine language)

Translation Hierarchy

2

Translation Hierarchy

• Compiler
– Translates high-level language program into

assembly language (CS 440)
• Assembler

– Converts assembly language programs into
object files

• Object files contain a combination of machine
instructions, data, and information needed to place
instructions properly in memory

Assemblers
• Assemblers need to

– translate assembly instructions and pseudo-instructions
into machine instructions

– Convert decimal numbers, etc. specified by
programmer into binary

• Typically, assemblers make two passes over the
assembly file
– First pass: reads each line and records labels in a

symbol table
– Second pass: use info in symbol table to produce actual

machine code for each line

3

Object file format

• Object file header describes the size and position of the
other pieces of the file

• Text segment contains the machine instructions
• Data segment contains binary representation of data in

assembly file
• Relocation info identifies instructions and data that depend

on absolute addresses
• Symbol table associates addresses with external labels and

lists unresolved references
• Debugging info

Object file
header

Text
segment

Data
segment

Relocation
information

Symbol
table

Debugging
information

Process for producing an
executable file

Object
file

Source
file Assembler

LinkerAssembler

Assembler Program
library

Object
file

Object
file

Source
file

Source
file

Executable
file

4

Object file

Instructions

Relocation
records

main:
jal ???

·
·
·

jal ???

call, sub
call, printf

Executable file

main:
jal printf

·
·
·

jal sub
printf:

·
·
·

sub:
·
·
·

Object file

sub:
·
·
·

C library

print:
·
·
·

Linker

Linker

• Tool that merges the object files produced by
separate compilation or assembly and creates an
executable file

• Three tasks
– Searches the program to find library routines used by

program, e.g. printf(), math routines,…
– Determines the memory locations that code from each

module will occupy and relocates its instructions by
adjusting absolute references

– Resolves references among files

5

6

Loader
• Part of the OS that brings an executable file

residing on disk into memory and starts it running
• Steps

– Read executable file’s header to determine the size of
text and data segments

– Create a new address space for the program
– Copies instructions and data into address space
– Copies arguments passed to the program on the stack
– Initializes the machine registers including the stack ptr
– Jumps to a startup routine that copies the program’s

arguments from the stack to registers and calls the
program’s main routine

$sp

$gp

0040 0000 hex

0

1000 0000 hex

Text

Static data

Dynamic data

Stack7fff ffff hex

1000 8000
hex

 pc

Reserved

