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Assemblers, Linkers & Loaders

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader
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Object: Machine language module Object: Library routine (machine language) 

Translation Hierarchy
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Translation Hierarchy

• Compiler
– Translates high-level language program into 

assembly language (CS 440)
• Assembler 

– Converts assembly language programs into 
object files

• Object files contain a combination of machine 
instructions, data, and information needed to place 
instructions properly in memory

Assemblers
• Assemblers need to 

– translate assembly instructions and pseudo-instructions 
into machine instructions

– Convert decimal numbers, etc. specified by 
programmer into binary

• Typically, assemblers make two passes over the 
assembly file
– First pass: reads each line and records labels in a 

symbol table
– Second pass: use info in symbol table to produce actual 

machine code for each line
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Object file format

• Object file header describes the size and position of the 
other pieces of the file

• Text segment contains the machine instructions
• Data segment contains binary representation of data in 

assembly file
• Relocation info identifies instructions and data that depend 

on absolute addresses
• Symbol table associates addresses with external labels and 

lists unresolved references
• Debugging info
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Object file

Instructions

Relocation
records

main:
jal ???

·
·
·

jal ???

call, sub
call, printf

Executable file

main:
jal printf

·
·
·

jal sub
printf:

·
·
·

sub:
·
·
·

Object file

sub:
·
·
·

C library

print:
·
·
·

Linker

Linker 

• Tool that merges the object files produced by 
separate compilation or assembly and creates an 
executable file

• Three tasks
– Searches the program to find library routines used by 

program, e.g. printf(), math routines,…
– Determines the memory locations that code from each 

module will occupy and relocates its instructions by 
adjusting absolute references

– Resolves references among files



5



6

Loader
• Part of the OS that brings an executable file 

residing on disk into memory and starts it running
• Steps 

– Read executable file’s header to determine the size of 
text and data segments

– Create a new address space for the program
– Copies instructions and data into address space
– Copies arguments passed to the program on the stack
– Initializes the machine registers including the stack ptr
– Jumps to a startup routine that copies the program’s 

arguments from the stack to registers and calls the 
program’s main routine

$sp

$gp

0040 0000 hex

0

1000 0000 hex

Text

Static data

Dynamic data

Stack7fff ffff hex

1000 8000
hex

 pc

Reserved


