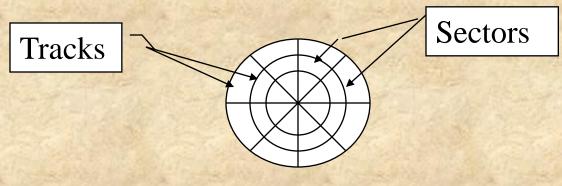
## **Learning Objectives**

- Understanding disk organization.
- Sectors, clusters and extents.
- Fragmentation.
- Disk access time.
- Improving disk access performance.

# Secondary Storage Management

- Secondary storage devices:
  - have much longer access time than main memory
  - have access times that vary from one access to another (some accesses are relatively fast and other accesses are slower on the same device)
  - have a lot of more storage than main memory
  - have storage that is non-volatile


## Disks

Types of commonly used disks

- hard disks
- floppy disks
- Iomega ZIP disks
- Jaz disks

## **The Organization of Disks**

- Data is stored on the surface of one or more platters.
- Disk storage units are:
  - tracks and cylinders
  - sectors



CPSC 231 Secondary storage (D.H.)

## **Disk Storage Capacity**

- The amount of data that can be held on a disk depends on
  - how densely bits can be stored on the disk surface
- The capacity of the disk is a function of:
  - the number of cylinders
  - the number of tracks per cylinder
  - the capacity of a track

Track capacity =number of sectors per track × bytes per sector Cylinder capacity=number of tracks per cylinder × track capacity Drive capacity = number of cylinders × cylinder capacity

# How is the Data Read from or Written to a Disk?

- The operating system sends control signals to the disk via a disk driver to read or to write data from a given sector of a given cylinder.
- The disk is rotating to position the needed sector under the *read/write* head (*rotational delay*)
- The read/write head is moving to the needed cylinder (*seek time*).

# **Specification of Disk Drives**

- Capacity: e.g. 2 GB
- Minimum (track to track) seek time: e.g. 1 msec
- Average seek time : e.g. 12 msec (milliseconds)
- Maximum seek time: e.g. 22 msec
- Spindle speed: e.g. 5200 rpm (rotations per minute)
- Average rotational delay: e.g. 6 msec
- Mximum transfer rate: e.g.2796 bytes/msec=2730K/sec
- Bytes per sector: e.g. 512
- Sectors per track: e.g. 63
- Tracks per cylinder: e.g. 16
- Cylinders: 4092

CPSC 231 Secondary storage (D.H.)

## **Organizing Data by Sectors**

- Consecutive physical sectors sometimes are not consecutive logically
  - this is called sector interleaving
- In the early 1990s, controller speeds improved so that disks can now offer noninterleaving (also known as 1:1 interleaving)

## Clusters

- A cluster is a fixed number of consecutive (logical) disk sectors.
- Some operating systems view each file as a series of clusters.
- Clusters are designed to improve performance since all sectors in one cluster can be accessed without an additional seek.

### **Extents**

- Extents of a file are those parts of the file which are stored in contiguous clusters.
- It is very beneficial to store the whole file in one extent (seek time is minimized).

## Fragmentation

- Fragmentation is the wasted disk space due to the fact that the smallest organizational unit of a disk is one sector.
- If a sector size is 512 bytes than even if we need to store only one byte, we have to allocate to it one whole sector. Thus 511 bytes are wasted.

## **Blocks**

- Some disk allow for storing data in *user defined blocks* instead of sectors.
- When the data on a disk is organized in blocks, this usually means that the amount of data transferred in a single I/O operation can vary.
- Blocks can be either variable or fixed length.
- Block organization can be more efficient than sector organization but it is much more complex.

### **Non-data Overhead**

- Non-data overhead includes at the beginning of each sector:
  - sector address
  - track address
  - sector usability

## **The Cost of Disk Access**

#### • Seek time

- the time required to move the r/w head to the correct cylinder
- Rotational delay
  - the time required to rotate the disk so that the correct sector is positioned under the r/w head
- Transfer time
  - the time required to transfer the data:

#### number of bytes transferred

Transfer time =

× rotation time

number of bytes on a track

CPSC 231 Secondary storage (D.H.)

### **Disks as Bottlenecks**

- Disk speeds lag far behind
  - CPU
  - main memory
  - local network
- Computer programs spend most of time awaiting data from the disk

## **Improving Disk Performance**

- Disk striping
  - splitting the parts of a single file on several drives
- RAID
  - Redundant Array of Inexpensive Disks
- RAM disk
- Disk caching
- Buffering