
EENG212 – Algorithms & Data Structures
Fall 07/08 – Lecture Notes # 5b

Outline
 Dynamic Memory Allocation

 malloc(), free() and calloc() functions
 Dynamically Allocated Arrays

 DYNAMIC MEMORY ALLOCATION

Dynamic allocation is the means by which a program can obtain memory while it is
running.

 Pointers provide necessary support for C’s powerful dynamic memory allocation.
 In general global variables are allocated storage at compile time. Local variables use the
program stack. However neither global nor local variables can be added during program
execution.

 Memory allocated by C’s dynamic allocation functions come from the “heap”: the region of
free memory that lies between your program’s permanent storage area and the stack.

 In general the heap contains a fairly large amount of free memory.

 malloc() function

 malloc() function dynamically allocates memory during the program. It is a library function
included in the <stdlib.h> header file.
 The function prototype is given below:

 void * malloc(size_t number_of_bytes);

where, size_t is defined in header file as unsigned integer and
 number_of_bytes is the amount of memory we wish to allocate

 After a successful call, malloc() returns a pointer to the first byte of the region of memory.
If memory is not enough the function returns a NULL.

Ex: Code fragments below allocate 1000 bytes of contigious memory.

 char *p;
 p =(char *)malloc(1000); //(char *) forces void pointer to
 //become a character pointer

Ex: Code below allocates space for 50 integers.

 int *p;
 p =(int *)malloc(50*sizeof(int));//(int *) forces void pointer
 // to become a integer pointer

Since heap is not infinite you must check the value returned by malloc() to make sure it is not

null. You can use the following code fragment for this purpose.

if(!(p=(int *)malloc(100)))
{
 printf(“Out of memory \n”);
 exit(1);
 }

 free() function

 free() function is the opposite of malloc(). It returns previously allocated memory to the
system. It has the prototype below:

void free(void *p);

 It is critical that you never call free() with an invalid argument. This will destroy the free list.

 calloc() function
 calloc() function allocates an amount of memory equal to num*size. That is calloc()
allocates enough memory for an array of num objects, each object being size bytes long.
Memory allocated by calloc() is released by free() function.
 The name calloc comes from “ contiguous allocation”.
 calloc() has the following function prototype.

void *calloc(size_t n, size_t number_of_bytes);

where, size_t is defined in header file as unsigned integer.
 n is the number of object to be used in the dynamic array and

number_of_bytes is the size of each object in the array.

Ex: Code fragments below dynamically allocates 100 elements to an integer array.

 int *p;

 p = (int *) calloc(100,sizeof(int));//(int *) forces the void
 // pointer to become an int pointer

 Dynamically Allocated Arrays

 Sometimes you will want to allocate memory using malloc() or calloc() but operate on that
memory as if it were an array, using an array index.

 Since any pointer may be indexed as if it were a single-dimensional array this is not a
problem.

Ex: In this program pointer s is used in the call to gets() and then indexed as an array to print the
string backwards.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

void main(void)
{
 char *s;
 register int t;
 s= (char *)malloc(80); // (char *) forces the void * to
 if(!s) // an char *.
 {
 printf(“Memory request failed \n”);
 exit(1);
}
gets(s); //used for passing arrays into functions
 //standard library function

for(t=strlen(s)-1; t>=0; t--)
 putchar(s[t]);

free(s);
}

Ex: The following program asks the user to specify the size of the dynamic integer array to be used,
and then displays the array elements entered by the user in the reverse order.

#include<stdio.h>
#include<stdlib.h>
void main(void)
{
 int *aptr, i, n;
 printf(“Specify the size of you integer array\n”);
 scanf(“%d”,&n);

 aptr= (int *)calloc(n, sizeof(int)); // (int *) forces
 // the void * to int *.

 printf(“The array is ready Enter %d numbers one by one\n”, n);
 for(i=0;i<n;i++)
 scanf(“%d”,&aptr[i]);

 for(i=n-1;i>=0;i--)
 printf(“%d,”,aptr[i]);
 free(aptr);
}

