
C programming language:

Functions in C

Functions in C

OUTLINE

Review of Functions in C

Types of Function Calls

Call by Value

Call by Reference

FUNCTIONS

Modules in C are called functions. A function

in C is defined to be the program segment

that carries out some specific, well defined

task. There are two types of functions:

 Library functions

 Programmer Defined functions

Library Functions

C standard library provides a rich collection of

functions for performing I/O operations,

mathematical calculations, string

manipulation operations etc.

For example, sqrt(x) is a function to calculate

the square root of a double number provided

by the C standard library and included in the

<math.h> header file.

Library Functions

Ex:

:

double a=9.9, b;

b = sqrt(a);

printf(“The square root of %f is %f”, a, b);

:

Other functions such as exp(x) (exponential function
ex) and pow(x,y) (xy) ... can be used as they are
needed. Note that each program in C has a function
called main which is used as the root function of
calling other library functions.

Programmer Defined Functions

In C, the programmers can write their own

functions and use them in their programs.

Ex:

The following program calls the programmer

defined function called square to calculate

the square of the numbers from 1 to 10.

Programmer Defined Functions

#include<stdio.h>

int square(int); /* function prototype */

int main()

{

int x;

printf(“the squares of numbers from 1 to 10 are:\n”);

for(x=1 ;x <= 10; x++)

{ y = square(x); /*function call */

printf(“the sqare of %d = %d\n”,x, y); }

return 0; }

/*function definition */

int square (int a)

{

int b;

b = a * a;

return b;

}

Function Prototype

 Function prototypes are always declared at

the beginning of the program indicating the

name of the function, the data type of its

arguments which is passed to the function

and the data type of the returned value

from the function.

Example

 The following program calculates the average of the 3 float
numbers entered by the user.

 #include<stdio.h>

 float average(float, float, float); /*function prototype */

 int main()

 {

 float a, b, c;

 printf(“Enter three numbers please\n”);

 scanf(“%f”,&a);

 scanf(“%f”,&b);

 scanf(“%f”,&c);

 printf(“the average of 3 numbers = %.3f\n”,average(a,b,c));

 return 0;

 }

Example

 /*function definition */

 float average(float x, float y, float z) /*local

variables x,y,z */

 {

 float r;

 r = (x+y+z)/3;

 return r;

 }

Example

 The following program displays all the integers between two
integer numbers.

 #include<stdio.h>

 void printNumbers(int , int); /*function prototype */

 int main()

 {

 int a, b, c;

 printf(“Enter two integers and I will print the all the

 numbers in between\n”);

 scanf(“%d%d”,&n,&m);

 printNumbers(n,m); /*function call */

 }

Example

 void printNumbers(int x, int y)

 {

 int i; /*local variable */

 if(x<=y)

 for(i=x;i<=y;i++)

 printf(“%d \t”,i);

 else

 for(i=y;i<=x;i++)

 printf(“%d \t”,i);

 return; /*optional */

 }

TYPES OF FUNCTION CALLS

Call by Value:

When a function is called by an

argument/parameter which is not a pointer the

copy of the argument is passed to the function.

Therefore a possible change on the copy does

not change the original value of the argument.

Example

 Write a program to calculate and print the area and the perimeter of a circle.
Note that theradius is to be entered by the user. (Use Call by value approach)

 #

 include<stdio.h> /*The function calls are Call by Value*/

 #define pi 3.14

 float area(float);

 float perimeter(float);

 int main()

 {

 float r, a, p;

 printf(“Enter the radius\n”);

 scanf(“%f”,&r);

 a = area(r);

 p = perimeter(a);

 printf(“The area = %.2f, \n The Perimeter = %.2f”, a, p);

 return 0;

 }

Example

 float area(float x)

 {

 return pi*x*x;

 }

 float perimeter(float y)

 {

 return 2.0*pi*y;

 }

TYPES OF FUNCTION CALLS

Call by Reference:

When a function is called by an

argument/parameter which is a pointer (address

of the argument) the copy of the address of

the argument is passed to the function.

Therefore a possible change on the data at the

referenced address change the original value of

the argument.

Example

 Write a program to calculate and print the area and the perimeter of a
circle. Note that the radius is to be entered by the user. (Use Call by
reference approach)

 #include<stdio.h> /*The function calls is Call by Reference*/

 #define pi 3.14

 void area_perimeter(float, float *, float *);

 int main()

 {

 float r, a, p;

 printf(“Enter the radius\n”);

 scanf(“%f”,&r);

 area_perimeter(r,&a,&p);

 printf(“The area = %.2f, \n The Perimeter = %.2f”, a, p);

 return 0;

 }

Example

 void area_perimeter(float x, float *aptr,

float *pptr);

 {

 *aptr = pi*x*x;

 *pptr = 2.0*pi*x;

 }

