
Chapter 7 - Pointers

Outline
7.1 Introduction

7.2 Pointer Variable Declarations and Initialization

7.3 Pointer Operators

7.4 Calling Functions by Reference

7.5 Using the Const Qualifier with Pointers

7.6 Bubble Sort Using Call by Reference

7.7 Pointer Expressions and Pointer Arithmetic

7.8 The Relationship between Pointers and Arrays

7.9 Arrays of Pointers

7.10 Case Study: A Card Shuffling and Dealing

Simulation

7.11 Pointers to Functions

7.1 Introduction
 Pointers

 Powerful, but difficult to master

 Simulate call-by-reference

 Close relationship with arrays and strings

7.2 Pointer Variable Declarations and

Initialization

 Pointer variables

 Contain memory addresses as their values

 Normal variables contain a specific value (direct reference)

 Pointers contain address of a variable that has a specific value

(indirect reference)

 Indirection - referencing a pointer value

count

7

countPtr

count

7

7.2 Pointer Variable Declarations and

Initialization (II)

 Pointer declarations
 * used with pointer variables

int *myPtr;

 Declares a pointer to an int (pointer of type int *)

 Multiple pointers, multiple *

int *myPtr1, *myPtr2;

 Can declare pointers to any data type

 Initialize pointers to 0, NULL, or an address

 0 or NULL - points to nothing (NULL preferred)

7.3 Pointer Operators

 & (address operator)
 Returns address of operand

int y = 5;

int *yPtr;

yPtr = &y; //yPtr gets address of y

 yPtr “points to” y

yPtr

y

5

yptr

500000 600000

y

600000 5

Address of y

is value of
yptr

7.3 Pointer Operators (II)

 * (indirection/dereferencing operator)

 Returns a synonym/alias of what its operand points to

*yptr returns y (because yptr points to y)

 * can be used for assignment

 Returns alias to an object

*yptr = 7; // changes y to 7

 Dereferenced pointer (operand of *) must be an lvalue (no

constants)

7.3 Pointer Operators (III)
 * and & are inverses

 They cancel each other out

*&yptr -> * (&yptr) -> * (address of yptr)->

returns alias of what operand points to -> yptr

&*yptr -> &(*yptr) -> &(y) -> returns address of y,

which is yptr -> yptr

1. Declare variables

2 Initialize variables

3. Print

Program Output

1 /* Fig. 7.4: fig07_04.c

2 Using the & and * operators */

3 #include <stdio.h>

4

5 int main()

6 {

7 int a; /* a is an integer */

8 int *aPtr; /* aPtr is a pointer to an integer */

9

10 a = 7;

11 aPtr = &a; /* aPtr set to address of a */

12

13 printf("The address of a is %p"

14 "\nThe value of aPtr is %p", &a, aPtr);

15

16 printf("\n\nThe value of a is %d"

17 "\nThe value of *aPtr is %d", a, *aPtr);

18

19 printf("\n\nShowing that * and & are inverses of "

20 "each other.\n&*aPtr = %p"

21 "\n*&aPtr = %p\n", &*aPtr, *&aPtr);

22

23 return 0;

24 }

The address of a is 0012FF88

The value of aPtr is 0012FF88

The value of a is 7

The value of *aPtr is 7

Proving that * and & are complements of each other.

&*aPtr = 0012FF88

*&aPtr = 0012FF88

The address of a is the value

of aPtr.

The * operator returns an

alias to what its operand
points to. aPtr points to a,

so *aPtr returns a.

Notice how * and

& are inverses

7.4 Calling Functions by Reference

 Call by reference with pointer arguments
 Pass address of argument using & operator

 Allows you to change actual location in memory

 Arrays are not passed with & because the array name is already a pointer

 * operator
 Used as alias/nickname for variable inside of function

void double(int *number)

{

*number = 2 * (*number);

}

*number used as nickname for the variable passed

1. Function prototype

- takes a pointer to an
int.

1.1 Initialize variables

2. Call function

3. Define function

Program Output

1 /* Fig. 7.7: fig07_07.c

2 Cube a variable using call-by-reference

3 with a pointer argument */

4

5 #include <stdio.h>

6

7 void cubeByReference(int *); /* prototype */

8

9 int main()

10 {

11 int number = 5;

12

13 printf("The original value of number is %d", number);

14 cubeByReference(&number);

15 printf("\nThe new value of number is %d\n", number);

16

17 return 0;

18 }

19

20 void cubeByReference(int *nPtr)

21 {

22 *nPtr = *nPtr * *nPtr * *nPtr; /* cube number in main */

23 }

The original value of number is 5

The new value of number is 125

Notice how the address of
number is given -

cubeByReference expects a

pointer (an address of a variable).

Inside cubeByReference,

*nPtr is used (*nPtr is

number).

7.5 Using the Const Qualifier with Pointers

 const qualifier - variable cannot be changed
 Good idea to have const if function does not need to change a variable

 Attempting to change a const is a compiler error

 const pointers - point to same memory location
 Must be initialized when declared

int *const myPtr = &x;

 Type int *const - constant pointer to an int

const int *myPtr = &x;

 Regular pointer to a const int

const int *const Ptr = &x;

 const pointer to a const int

 x can be changed, but not *Ptr

1. Declare variables

1.1 Declare const

pointer to an int.

2. Change *ptr

(which is x).

2.1 Attempt to change
ptr.

3. Output

Program Output

1 /* Fig. 7.13: fig07_13.c

2 Attempting to modify a constant pointer to

3 non-constant data */

4

5 #include <stdio.h>

6

7 int main()

8 {

9 int x, y;

10

11 int * const ptr = &x; /* ptr is a constant pointer to an

12 integer. An integer can be modified

13 through ptr, but ptr always points

14 to the same memory location. */

15 *ptr = 7;

16 ptr = &y;

17

18 return 0;

19 }

FIG07_13.c:

Error E2024 FIG07_13.c 16: Cannot modify a const object in

function main

*** 1 errors in Compile ***

Changing *ptr is allowed - x is

not a constant.

Changing ptr is an error -

ptr is a constant pointer.

7.6 Bubble Sort Using Call-by-reference

 Implement bubblesort using pointers
 Swap two elements

 swap function must receive address (using &) of array elements

 Array elements have call-by-value default

 Using pointers and the * operator, swap can switch array elements

 Psuedocode
Initialize array

print data in original order

Call function bubblesort

print sorted array

Define bubblesort

7.6 Bubble Sort Using Call-by-reference (II)

 sizeof

 Returns size of operand in bytes

 For arrays: size of 1 element * number of elements

 if sizeof(int) = 4 bytes, then
int myArray[10];

printf("%d", sizeof(myArray));

will print 40

 sizeof can be used with
 Variable names

 Type name

 Constant values

1. Initialize array

1.1 Declare variables

2. Print array

2.1 Call bubbleSort

2.2 Print array

1 /* Fig. 7.15: fig07_15.c

2 This program puts values into an array, sorts the values into

3 ascending order, and prints the resulting array. */

4 #include <stdio.h>

5 #define SIZE 10

6 void bubbleSort(int *, const int);

7

8 int main()

9 {

10

11 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };

12 int i;

13

14 printf("Data items in original order\n");

15

16 for (i = 0; i < SIZE; i++)

17 printf("%4d", a[i]);

18

19 bubbleSort(a, SIZE); /* sort the array */

20 printf("\nData items in ascending order\n");

21

22 for (i = 0; i < SIZE; i++)

23 printf("%4d", a[i]);

24

25 printf("\n");

26

27 return 0;

28 }

29

30 void bubbleSort(int *array, const int size)

31 {

32 void swap(int *, int *);

Bubblesort gets passed the

address of array elements

(pointers). The name of an

array is a pointer.

3. Function definitions

Program Output

33 int pass, j;

34 for (pass = 0; pass < size - 1; pass++)

35

36 for (j = 0; j < size - 1; j++)

37

38 if (array[j] > array[j + 1])

39 swap(&array[j], &array[j + 1]);

40 }

41

42 void swap(int *element1Ptr, int *element2Ptr)

43 {

44 int hold = *element1Ptr;

45 *element1Ptr = *element2Ptr;

46 *element2Ptr = hold;

47 }

Data items in original order

2 6 4 8 10 12 89 68 45 37

Data items in ascending order

2 4 6 8 10 12 37 45

7.7 Pointer Expressions and Pointer Arithmetic
 Arithmetic operations can be performed on pointers

 Increment/decrement pointer (++ or --)

 Add an integer to a pointer(+ or += , - or -=)

 Pointers may be subtracted from each other

 Operations meaningless unless performed on an array

7.7 Pointer Expressions and Pointer Arithmetic

(II)
 5 element int array on machine with 4 byte ints

 vPtr points to first element v[0]

at location 3000. (vPtr = 3000)

 vPtr +=2; sets vPtr to 3008

 vPtr points to v[2] (incremented

by 2), but machine has 4 byte ints.

pointer variable vPtr

v[0] v[1] v[2] v[4]v[3]

3000 3004 3008 3012 3016

location

7.7 Pointer Expressions and Pointer Arithmetic

(III)

 Subtracting pointers

 Returns number of elements from one to the other.

vPtr2 = v[2];

vPtr = v[0];

vPtr2 - vPtr == 2.

 Pointer comparison (<, == , >)

 See which pointer points to the higher numbered array element

 Also, see if a pointer points to 0

7.7 Pointer Expressions and Pointer Arithmetic

(IV)

 Pointers of the same type can be assigned to each other

 If not the same type, a cast operator must be used

 Exception: pointer to void (type void *)

 Generic pointer, represents any type

 No casting needed to convert a pointer to void pointer

 void pointers cannot be dereferenced

7.8 The Relationship Between Pointers and

Arrays

 Arrays and pointers closely related

 Array name like a constant pointer

 Pointers can do array subscripting operations

 Declare an array b[5] and a pointer bPtr
bPtr = b;

Array name actually a address of first element

OR

bPtr = &b[0]

Explicitly assign bPtr to address of first element

7.8 The Relationship Between Pointers and

Arrays (II)
 Element b[n]

 can be accessed by *(bPtr + n)

 n - offset (pointer/offset notation)

 Array itself can use pointer arithmetic.

b[3] same as *(b + 3)

 Pointers can be subscripted (pointer/subscript notation)

bPtr[3] same as b[3]

7.9 Arrays of Pointers

 Arrays can contain pointers - array of strings
char *suit[4] = {"Hearts", "Diamonds", "Clubs", "Spades" };

 String: pointer to first character

 char * - each element of suit is a pointer to a char

 Strings not actually in array - only pointers to string in array

 suit array has a fixed size, but strings can be of any
size.

suit[3]

suit[2]

suit[1]

suit[0] ’H’ ’e’ ’a’ ’r’ ’t’ ’s’ ’\0’

’D’ ’i’ ’a’ ’m’ ’o’ ’n’ ’d’ ’s’ ’\0’

’C’ ’l’ ’u’ ’b’ ’s’ ’\0’

’S’ ’p’ ’a’ ’d’ ’e’ ’s’ ’\0’

7.10 Case Study: A Card Shuffling and Dealing

Simulation

 Card shuffling program
 Use array of pointers to strings

 Use double scripted array (suit, face)

 The numbers 1-52 go into the array - this is the order they are dealt

Hearts

Diamonds

Clubs

Spades

0

1

2

3

Ace Two Three Four Five Six Seven Eight Nine Ten Jack Queen King

0 1 2 3 4 5 6 7 8 9 10 11 12

deck[2][12] represents the King of Clubs

Clubs King

7.10 Case Study: A Card Shuffling and Dealing

Simulation

 Pseudocode -Top level: Shuffle and deal 52 cards

Initialize the suit array

Initialize the face array

Initialize the deck array

Shuffle the deck

Deal 52 cards

For each of the 52 cards

Place card number in randomly

selected unoccupied slot of deck

For each of the 52 cards

Find card number in deck array

and print face and suit of card

Choose slot of deck randomly

While chosen slot of deck has been

previously chosen

Choose slot of deck randomly

Place card number in chosen slot of

deck

For each slot of the deck array

If slot contains card number

Print the face and suit of the

card

Second refinement

Third refinement

First refinement

1. Initialize suit and

face arrays

1.1 Initialize deck

array

2. Call function
shuffle

2.1 Call function deal

3. Define functions

1 /* Fig. 7.24: fig07_24.c

2 Card shuffling dealing program */

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <time.h>

6

7 void shuffle(int [][13]);

8 void deal(const int [][13], const char *[], const char *[]);

9

10 int main()

11 {

12 const char *suit[4] =

13 { "Hearts", "Diamonds", "Clubs", "Spades" };

14 const char *face[13] =

15 { "Ace", "Deuce", "Three", "Four",

16 "Five", "Six", "Seven", "Eight",

17 "Nine", "Ten", "Jack", "Queen", "King" };

18 int deck[4][13] = { 0 };

19

20 srand(time(0));

21

22 shuffle(deck);

23 deal(deck, face, suit);

24

25 return 0;

26 }

27

28 void shuffle(int wDeck[][13])

29 {

30 int row, column, card;

31

32 for (card = 1; card <= 52; card++) {

3. Define functions

33 do {

34 row = rand() % 4;

35 column = rand() % 13;

36 } while(wDeck[row][column] != 0);

37

38 wDeck[row][column] = card;

39 }

40 }

41

42 void deal(const int wDeck[][13], const char *wFace[],

43 const char *wSuit[])

44 {

45 int card, row, column;

46

47 for (card = 1; card <= 52; card++)

48

49 for (row = 0; row <= 3; row++)

50

51 for (column = 0; column <= 12; column++)

52

53 if (wDeck[row][column] == card)

54 printf("%5s of %-8s%c",

55 wFace[column], wSuit[row],

56 card % 2 == 0 ? '\n' : '\t');

57 }

The numbers 1-52 are

randomly placed into the
deck array.

Searches deck for the

card number, then prints

the face and suit.

Program Output

Six of Clubs Seven of Diamonds

Ace of Spades Ace of Diamonds

Ace of Hearts Queen of Diamonds

Queen of Clubs Seven of Hearts

Ten of Hearts Deuce of Clubs

Ten of Spades Three of Spades

Ten of Diamonds Four of Spades

Four of Diamonds Ten of Clubs

Six of Diamonds Six of Spades

Eight of Hearts Three of Diamonds

Nine of Hearts Three of Hearts

Deuce of Spades Six of Hearts

Five of Clubs Eight of Clubs

Deuce of Diamonds Eight of Spades

Five of Spades King of Clubs

King of Diamonds Jack of Spades

Deuce of Hearts Queen of Hearts

Ace of Clubs King of Spades

Three of Clubs King of Hearts

Nine of Clubs Nine of Spades

Four of Hearts Queen of Spades

Eight of Diamonds Nine of Diamonds

Jack of Diamonds Seven of Clubs

Five of Hearts Five of Diamonds

Four of Clubs Jack of Hearts

Jack of Clubs Seven of Spades

7.11 Pointers to Functions

 Pointer to function
 Contains address of function

 Similar to how array name is address of first element

 Function name is starting address of code that defines function

 Function pointers can be
 Passed to functions

 Stored in arrays

 Assigned to other function pointers

7.11 Pointers to Functions (II)
 Example: bubblesort
 Function bubble takes a function pointer

 bubble calls this helper function

 this determines ascending or descending sorting

 The argument in bubblesort for the function pointer:

bool (*compare)(int, int)

tells bubblesort to expect a pointer to a function that takes two ints and

returns a bool.

 If the parentheses were left out:

bool *compare(int, int)

 Declares a function that receives two integers and returns a pointer to a bool

1. Initialize array.

2. Prompt for

ascending or

descending sorting.

2.1 Put appropriate

function pointer into

bubblesort.

2.2 Call bubble.

3. Print results.

1 /* Fig. 7.26: fig07_26.c

2 Multipurpose sorting program using function pointers */

3 #include <stdio.h>

4 #define SIZE 10

5 void bubble(int [], const int, int (*)(int, int));

6 int ascending(int, int);

7 int descending(int, int);

8

9 int main()

10 {

11

12 int order,

13 counter,

14 a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };

15

16 printf("Enter 1 to sort in ascending order,\n"

17 "Enter 2 to sort in descending order: ");

18 scanf("%d", &order);

19 printf("\nData items in original order\n");

20

21 for (counter = 0; counter < SIZE; counter++)

22 printf("%5d", a[counter]);

23

24 if (order == 1) {

25 bubble(a, SIZE, ascending);

26 printf("\nData items in ascending order\n");

27 }

28 else {

29 bubble(a, SIZE, descending);

30 printf("\nData items in descending order\n");

31 }

32

Notice the function pointer

parameter.

3.1 Define functions.

33 for (counter = 0; counter < SIZE; counter++)

34 printf("%5d", a[counter]);

35

36 printf("\n");

37

38 return 0;

39 }

40

41 void bubble(int work[], const int size,

42 int (*compare)(int, int))

43 {

44 int pass, count;

45

46 void swap(int *, int *);

47

48 for (pass = 1; pass < size; pass++)

49

50 for (count = 0; count < size - 1; count++)

51

52 if ((*compare)(work[count], work[count + 1]))

53 swap(&work[count], &work[count + 1]);

54 }

55

56 void swap(int *element1Ptr, int *element2Ptr)

57 {

58 int temp;

59

60 temp = *element1Ptr;

61 *element1Ptr = *element2Ptr;

62 *element2Ptr = temp;

63 }

64

ascending and

descending return true or

false. bubble calls swap if

the function call returns true.

Notice how function pointers

are called using the
dereferencing operator. The *

is not required, but emphasizes

that compare is a function

pointer and not a function.

3.1 Define functions.

Program Output

65 int ascending(int a, int b)

66 {

67 return b < a; /* swap if b is less than a */

68 }

69

70 int descending(int a, int b)

71 {

72 return b > a; /* swap if b is greater than a */

73 }

Enter 1 to sort in ascending order,

Enter 2 to sort in descending order: 1

Data items in original order

2 6 4 8 10 12 89 68 45 37

Data items in ascending order

2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,

Enter 2 to sort in descending order: 2

Data items in original order

2 6 4 8 10 12 89 68 45 37

Data items in descending order

89 68 45 37 12 10 8 6 4 2

