Isa Hierarchy and chaining

The ISA Hierarchy

Knowledge about objects, their attributes and their values need not be as
simple as in the relational knowledge. It may be necessary sometimes to augment
the basic representation of knowledge with some inference mechanisms. The
inference mechanisms operate on the structure of the representation. One of the
most useful forms of inference is property inheritance. In property inheritance,
elements of specific classes inherit attributes and values from general classes in
which they are included.

We can represent "Mithu is a parrot” as

Parmot

[
inst (isa)

Fig. 4.2 The ISA hierachy

We can further have the same property for different parrots along with their
properties like "Mithu is a parrot of green colour” and "Sithu is a parrot of green
color”.

Fig. Inheritence of properties
We can further ellaborate this property inheritance. It could be said as "parrot
belongs to a category of flying birds". It has properties of other birds like feathers,
head, eyes etc.

Fig. An ISA hierarchy ellaborated

The relationship which results mainly due to ISA hierarchy is class
membership and class inclusion.

Represent the following facts in predicate calculus.

a) Shreekant was a man.

b) Shreekant is Hindu.

c) All Hindus are Indians.

d) Shivaji is ruler.

e) All Indians were loyal to Shivaji.

1. man (Shreekant)

2. Hindu (Shreekant)

3. ¥x : Hindu (x) — Indian (x)

4. ruler (Shivaji)

9. ¥x : Indian (x) — loyalto (x, Shivaji)

or

1. Instance (Shreekant, man)

2. Instance (Shreekant, Hindu)

3. ¥x : Instance (x, Hindu) — Instance (x, Indian)
4. Instance (Shivaji, ruler)

5. ¥x : Instance (x, Indian) — loyalto (x, Shivaji)

Algorithm to retrieve a value for an attribute of instance object:
1. Find the object in the knowledge base.
2. If there is a value for the attribute report it.
3. Otherwise look for a value of instance if none fail.
4. Otherwise go to that node and find a value for the attribute and then
report it.
Otherwise search through using isa until a value is found for the attribute.

Computable Functions and Predicates

gt (10, 2) It (1, 10)
gt (15, 1) It (2, 15)
greater than less than

gt (2+4,1)

1. Chaminda was a witch.

2. Chaminda was a Ravansenapati.

3. Chaminda was born in 20 A.D.

4. All witches are mortal.
5. All Ravansenapatis died when the war started in 39 A.D.

6. No mortal lives longer than 120 years.
7. It is now 2005.

8. Alive means not dead.

9. If someone dies, then he is dead at all the later times.

8.

9.

Chaminda was a witch.
witch (Chaminda)
Chaminda was a Ravansenapati.
Ravansenapati (Chaminda)
Chaminda was born in 20 A.D.
borm (Chaminda, 20)
All witches are mortal.
¥ x : witch (x) = mortal (x)
All Ravansenapatis died when the war started in 39 A.D.
Started (war, 39) a ¥x : [Ravansenapati (x) — died (x,39)]
No mortal lives longer than 120 years.
¥x :¥h:Vta:mortal(x) A born(x,t;) Agt(tz —t1,120) — dead(x,t2)
It is now 2005.
now = 2005
Alive means not dead.
Vx:Vt:[alive(x,t) — —~dead(x,t) A[dead(x,t) »>—alive(x, t)]]
If someone dies, then he is dead at all the later times.
Vx:Vt:Via:died(x,t) Agt(tz,ty) — dead(x,t2)

10

— alive (Chaminda, now)

(9, Substitution)

dead (Chaminda, now)

(10, Substitution)

died (Chaminda, t,) " gt (now, t,)

(5, Substitution)
Ravansenapati (Chaminda) ™ gt (now, 39)
2
gt (now, 39)
(8, Subslitution)
gt (2005, 39)
(Compute gt)
nil

(a) One method to prove "Chaminda is dead®

— alive (Chaminda. now)
1 (9, Substitution)
dead (Chaminda, now)

1 (7, Substitution)
!
born (Chaminda, t,)

mortal (Chaminda)
bom (Chaminda, t,) 9t (now =1y, 120)
gt (now —t,, 120) T (3)
gt (now — 20, 120)
l (4, Substitution)
. b ®
witch (Chaminda)
gt (2005 - 20, 120)
gt (now =1y, 120) T[Cumputﬂ minus)
' L gt (1985, 120)
1 (Compute gt)
nil

(b) Second way to prove "Chaminda is dea

41l

Conversion into Clause Form

1. Eliminate all <=> connectives by replacing each instance of the form

(P<=>Q) by the equivalent expression
(P=>Q) A (Q=>P))
2. Eliminate all => connectives by replacing each instance of the form
(P=>Q) by - Pv Q)

3. Reduce the scope of each negation symbol to a single predicate by
applying equivalences such as converting

—~=PtoP;

-~ (PvQ)to-P A-Q;
-~ (PAQ) to-=Pv-Q;

- (Vx) Pto @x) - P, and
- @3x)Pto(vx)=P

12

4 Standardize variables: rename all variables so that each quantifier has its
own unique variable name.

For example, convert {(¥x) P(x) to (¥y) P(y) if there is another place
where variable x is already used.

5. Eliminate existential quantification by introducing Skolem functions.

For example, convert (3 x) P(x) to P(c) where c is a brand new constant
symbol that is not used in any other sentence. c is called a Skolem constant. More
generally, if the existential quantifier is within the scope of a universal quantified
variable, then introduce a Skolem function that depend on the universally
quantified variable. For example,

(vx) 3 v) P(xy) is converted to (vx) P(x, f(x)). f is called a Skolem function,
and must be a brand new function name that does not occur in any other sentence
in the entire KB. '

Example: (vx) (3y) loves (x, y) is converted to

(v¥x) loves(x, £(x)) where in this case f(x) specifies the person that x
loves. (If we knew that everyone loved their mother, then f could stand for the
mother-of function.

13

6. Remove universal quantification symbols by first moving them all to the
left end and making the scope of each the entire sentence, and then just
dropping the “prefix” part.

7. Distribute “and” over “or” to get a conjunction of disjunctions called
conjunctive normal form.

Convert (P A Q) v R to (P v R) A (Q v R),
convert ({(F v Q) v R to (P v Q v R).

8. Split each conjunct into a separate clause, which is just a disjunction (“or")
of negated and un-negated predicates, called literals. Standardize variables
apart again so that each clause contains variable names that do not occur in
any other clause.

14

Vx :[Roman(x) A know(X,Marcus) = [hate(X,
Caesar) V (V y: 3z: hate(y, z)=> thinkcrazy (x,y))]

1. Eliminate €2
Nothing to do here

2. Eliminate =2
Vx: [Roman(x) A know(x,Marcus)]V[hate(x, Caesar) V (Vy:
(3z: hate(y, z)) Vv thinkcrazy (x,y))].

3. Reduce Scope of " to single term.
Vx: 'Roman(x)V ~ know(x,Marcus)]V[hate(x, Caesar) V (V y:
Vz : "hate(y, z)) V thinkcrazy (x,y))]

15

4. Standardize variables so that quanifiers bind a unique value

Foreg V x: p(x) vV V X : Q(X)

Would be converted to prenex normalfo_rljn. It consists
of prefix of quantifiers followed

Y x: p(X) vV VY y : Q(y) by a matrix wff:;ceh is quantifier

Vv This step is in preparation for the next.

5. Move all quantifiers to the left of the formu%

Vx:V y:Vz: ['Roman(x)V know(x,Marcus) JV[hate(x, Caesar)
v (7 hate(y, z)) V thinkcrazy (x,y))]

6. Eliminate Existential qualifier
Vx : 3vy: father-of (y,x) converted to
Vx : father-of (y,x) T

3 y: President(y) Solemnization
President(S1) phm—

At this point formula is known as

7. Drop the Prefix

['Roman(x) vV know(x,Marcus)]V[hate(x, Caesar) V (
hate(y, z)) V thinkcrazy (X,y))]

8. Convert the matrix into conjunction of disjuncts

In our case there is no and so explore the associative
property of or

“"Roman(x) vV know(x,Marcus) V hate(x, Caesar) V
hate(y, z) V thinkcrazy (X,y)

9. Create a separate clause corresponding to each
conjunct.

10. Standardise apart the variables in set of clauses.

-

17

Convert the sentence

(V) (P(x) =2 [(Vy) (P(y) => P(f(x,vy))) A (Vy)
(Q(x,¥y) => Ply)))) to clause form

1. Eliminate <=>
Nothing to do here.
2. Eliminate =>

(Vx) (=P (x)v ((Vy) (=P (y)VP(E(x, ¥)))IA = (Vy) (Q(x,y)v P(y))))
3. Reduce scope of negation
(Vx) (=P (x)v(Vy) (PIYIVEIE(X,¥)))AE v) (Q(x, y)A =P(y))))

4. Standardize variables

(Vx) (=P (x)v ((Vy) (=P (y)v P(f(x,y)))AaEz) (Q(x,2)A = P(2))))
5. Eliminate existential quantification

V) (=P (x)v((¥y) (= P(y)vP{E(x,y))IA(Q(x,g(x))n = Plg(x)))]))
6. Drop universal quantification symbols

(=P (x}v{(=P(y)vP({Ef(x,y)))IvIQ(x,g(x))an =P(g(x)))))

18

7. Convert to conjunction of disjunctions
(=B (x)v =P(y)vP(f(x,yv))Iv(~P(x)vQ(x,g(x)))IAa(~P(x)v =Plg(x)})
8. Create separate clauses

= - P(x) v = Ply) v P({f(x,y))

= = P(x) v Q(x,g(x))

m = P(x) v = Pilgix))

9. Standardize variables
m - P(x) v = Ply) v P(f(x,v))
= — P(z) v Qfz,gl(z))
m = P(w) v = Plg(w))

19

Consider the following sentences:

» Shree is a mega star.

» Mega stars are rich.

* Rich people have fast cars.

» Fast cars consume a lot of petrol.

and try to draw the conclusion: Shree’s car consumes a lot of petrol. So we can
translate Shree is a mega star mega_star(Shree)

Mega stars are rich into:
¥ x : mega_star(x) = rich(x)
Rich peuplé have fast cars, the third axiom is more difficult:
e Is cars a relation and therefore car(x,y) says that case y is x’s car. OR
« Is cars a function? So we may have car_ofix).
Assume cars is a relation then axiom 3 may be written:
W x,y : car(x,y) = rich(y) = fast(x)

The fourth axiom is a general sttement about fast cars. Let consume(x) mean
that car x consumes a lot of petrol. Then we may write:

"I:!" x : [fast{x)a 3 y : car(x,y) = consume(x)

20

