Resolution




The Basis of Resolution

* Simple Iterative process
In proposition logic

* At each step, two clauses, called parent clauses
are compared (resolved) yielding new clause that
has been inferred from them.

* The new clause represents ways that the parent
clauses interact with each other

* Eg: There are two clauses in the system
Winter V summer

" Winter V cold }Summer V Cold



* Resolution operate by taking two clauses that each
contain the same literal.

e Literal must occur in positive form in one clause and
negative in other.

* Resolvent is obtained by combining all of the literals
of the two parent clauses except the one that cancel.

* |f the clause that is produced is empty clause, then a
contradiction has been found.

 Egtwo clauses
Winter
" Winter
Will produce empty clause

* |If contradiction exists then it will eventually be found
and if no contradiction then chances are that
procedure will never terminate.



Resolution more complicated in predicate logic

The theoretical basis of resolution principle in
predicate logic is Herbrand’s theorem

— To show that a set of clauses S is unsatisfiable ,
it is necessary to consider only interpretations

over a particular set, called Herbrand Universe of
S.

— A set of clauses S is unsatisfiable if and only if a
finite subset of ground instances of S is
unsatisfiable.



Resolution in Propositional Logic

Normal Forms
A sentence or well-formed formula (wff) is in conjunctive normal form if it is of the following form:
Ay AA AASA... AA,

where each clause, A; is of the form
B,wvB,vByv... VB,

Each B;is a literal, where a literal is a basic symbol of propositional logic.
Hence, in the following expression:

AAnBv(-CAD)
A is an atom, as are B, C, and D. The literals are A, B, =C, and D.

in conjunctive normal form (often written CNF)

set of or phrases anded together, such as:

@{Bv(ﬁ]a{—:ﬁv—-ﬂv—-ﬂ@




disjunctive normal form (DNF)
‘a set of and phrases ored together, as in

AVv(BAC)V{-AA-BA-CAD)

Any wif can be converted to CNF by using the following equivalences

. A—=~B={(A—=BAn{(B—=A)
A—=B=-AVvE
-AnB)=-Av-B

-(AV B)=-AA-B

—A=A
Av(iBAC)=(AvB)A(AV )

g o e ol e



(A = B} = C to CNF

{(A—=B)—=C

~(A=B)vC (2)
-(=AvB)vC (3)
(AA-B)vC (4)

(AvC)Aa(=Bv Q) (6)



A further example

A—(BaC)

(A= (BACHA(BACI—=A) (1)
(CAV(BACHA(-(BAC)VA) (2)
(FAV{(BAC) A{(-BvVv-CWvA) (3)

@vﬂ]n[HAvCJn[ﬂBvHCvﬂD (6)

Having converted a wif into CNF, we can now express it as a set of clauses.
So our expression above

(=AVBIA(-AVOC)A(-Bv-CvA)

would be represented inaﬁ

{(=A, B), (=A, C), (=B, -G, A)}




The Resolution Rule

AvB —Bwvw(C
AvC

can also be written as follows:

-A—=B B—C
—A = C

In this form, the rule can be seen to be saying that implication is transitive,
or in other words, if A implies B and B implies C, then A implies C.



If a wif contains a clause that contains literal L and another clause that con-
tains literal ~L, then these two clauses can be combined together, and L and
~L can be removed from those clauses. For example,

{(As B)’ (-'B) C)}
can be resolved to give D

Similarly,

{(A, B, C), D, (-A, D, E), (=D, F)}
can be resolved to give

{(B,C,D,E), D, (=D, F)}

which can be further resolved to give either

or
Note that at The fitst step, we also had a choice and could have resolved to

{(A, B, C), D, (mA, E, F)}
which can be further resolved to give
{(B, C,E, F), D}

10



Now, if resolves to give wif Q, we write
PE=Q

For example, we can resolve (A v B) A (=AW C) A (—BY C) as follows:
{(A, B), (-A, C), (-B, C)}
{(B, C), (-B, C}}
{C}

We can express this as
(AVB)A(CAVCIA(-BVC)=C

If we resolve two clauses, we produce the resolvent of those clauses. The
resolvent is a logical consequence of the two clauses.

11



Resolution Refutation

Now let us resolve the following clauses:

”_'Fh E}} |:_'ﬁ=: _'B: C:Ii A, _'{:I'

We begin by resolving the first clause with the second clause, thus eliminat-
ing Band —-B:

H_'P'-: C]: .ﬂ, _'E}
H:! _"':}

i

The fact that this resolution has resulted in falsum means that the original
clauses were inconsistent. We have refuted the original clauses, using reso-
lution refutation. We can write

{{"A! B]: ["'Jﬁl-: "'B, C}, ﬂ, —IC} I: e

12



Proof by Refutation (also known as proof by contradiction).
used in resolution refutation, is a powerful method for solving problems.

example, let us imagine that we want to determine whether the following logical argument is valid:

If it rains and I don’t have an umbrella, then I will get wet.
It is raining, and I don’t have an umbrella.

Therefore, I will get wet.

We can rewrite this in propositional calculus as follows:
(AA-B)—=C
AA—-B
5 C

13



To prove this by refutation, we first negate the conclusion and convert the expressions into clause form.

The first expression is the only one that is not already in CNF, so first we convert this to CNF as follows:

{Anrn=-B)—C
= (AA-B)vC(C
=-AvBvC

Now, to prove that our conclusion is valid, we need to show that
{(-A, B, C), A, -B,~C} E L
We resolve these clauses as follows:
{(B, C), =B, =C}
{C,~C}
1

Hence, in showing that by negating our conclusion we lead to a contradic-
tion, we have shown that our ornginal conclusion must have been true.

14



If this process leads to a situation where some clauses are unresolved, and
falsum cannot be reached, we have shown that the clauses with the negated

conclusion are not contradictory and that therefore the original conclusion
was not valid.

15



resolution proof in the form of a tree,

A=B First we negate the conclusion, to give: -(A — F).
B— C Next we convert to clause form:
C—D D—=EvEF
bD—=EvE = -Dv (EvF)
A= F and
-~(A = F)
= —~(-AVF)
= A AM-F

So, our clauses are

{{"'A:- B]\ {_‘B} C}l {_'C: D]:- {"D,. E:- F]:-A:- -'F]}

16



H_"-lﬁh B]t {_"B,-, E}l {_"::t D]:- {"D,. E:- F]:- A:- -'F”

Our proof in tree form is as follows:

(= A, B) (-8,C) (-C,D) (-D,E F) A -F

\/
(A, )
(A, D)
(A E,F)
(€. F
conclude that our original conclusion was not valid i



Assignment: Applications of
Resolution

Refer : Artificial intelligence
illuminated

By Ben Coppin

18



19



oS A R G

To apply resolution to FOPL expressions, we first need to deal with the
presence of the quantifiers V and 3. The method that is used is to move
these quantifiers to the beginning of the expression, resulting in an expres-

sion that is in prenex normal form.

AeB=(A->B)A(B—=A) 7.
A-B=-AVB 8.
-(AAB)=-AV-B 9.
-(AvB)=-AA-B 10.
—A=A 11.
AV(BAC)=(AVB)A(AVC) 12.

13.

14,

15.
16.

-(Vx)A(x) = (3x)-A(x)

=(Ix)A(x) = (Vx)-A(x)

(Vx)A(x) A B = (Vx)(A(x) A B)

(Vx)A(x) v B = (Vx)(A(x) v B)

(Ix)A(x) A B = (Ix)(A(x) A B)

(3x)A(x) v B = (Ix)(A(x) v B)

(VA®) A (Vy)B(y) = (VX)(Vy)(AR) A B(y))
(Vx)A(x) A (3y)B(y) = (Vx)(3y) (A(x) A B(y))
(3x)A(x) A (Vy)B(y) = (3x)(Vy)(A(x) A B(y))

(3x)A(x) A (Jy)B(y) = (3x)(3y)(A(x) A B(y))
20



Before resolution can be carried out on a wif, we need to eliminate all the
existential quantifiers, 3, from the wif.

This is done by replacing a variable that is existentially quantified by a con-
stant, as in the following case:

3(x) P(x)
would be converted to
P(c)

where ¢ is a constant that has not been used elsewhere in the wff..

This process is mﬂe@:@nd the variable cis called HW

21




dx(x v b)

This would leave us with
bvb

which reduces to
b

This clearly is not the same expression, and, in fact, it should be skolemized
using a different constant, such as:

cvb

(Vx)(Fy)(P(x,y))
In this ¢ er than replacing y with a skolem constant, we must replace
it with a(skolem function, yuch as in the following;

(Vx)(P(x.f(x))

Having removed the existential quantifiers in this way, the wif is said to be
in skolem normal form, and has been skolemized.

22



