
C LANGUAGE

OVERVIEW OF C

 C is developed by Dennis Ritchie

 C is a structured programming language

 C supports functions that enables easy

maintainability of code, by breaking large file

into smaller modules

 Comments in C provides easy readability

 C is a powerful language

FEATURES OF C LANGUAGE

 C has relatively easier syntax.

 Efficient and fast programming language

 Contains vast set of data types

 Has 32 most commonly used keywords

 Highly portable language

 has got rich set of library functions

 C is an extendible language

 Has support for graphics programming

STRUCTURE OF C PROGRAM

Documentation Section

Link section

Definition section

Global definition section

main() function section

{

Declaration part

Executable part

}

Subprogram section

Function 1

Function 2

 -

 -

Function n

PROGRAM STRUCTURE

A sample C Program

#include<stdio.h>

int main()

{

 --other statements

}

HEADER FILES

 The files that are specified in the include section

is called as header file

 These are precompiled files that has some

functions defined in them

 We can call those functions in our program by

supplying parameters

 Header file is given an extension .h

 C Source file is given an extension .c

MAIN FUNCTION

 This is the entry point of a program

 When a file is executed, the start point is the
main function

 From main function the flow goes as per the
programmers choice.

 There may or may not be other functions written
by user in a program

 Main function is compulsory for any c program

WRITING THE FIRST PROGRAM

#include<stdio.h>

int main()

{

 printf(“Hello”);

 return 0;

}

This program prints Hello on the screen
when we execute it

RUNNING A C PROGRAM

Type a program

Save it

Compile the program – This will generate

an exe file (executable)

Run the program (Actually the exe

created out of compilation will run and

not the .c file)

 In different compiler we have different

option for compiling and running. We give

only the concepts.

COMMENTS IN C

 Single line comment

 // (double slash)

 Termination of comment is by pressing enter key

 Multi line comment

/*….

…….*/

This can span over to multiple lines

CHARACTER SET

 Characters in C are grouped into following

categories

 Letters

 Digits

 Special characters

 White spaces

VARIABLES

Variables are data that will keep on
changing

Declaration
<<Data type>> <<variable name>>;

int a;

Definition
<<varname>>=<<value>>;

a=10;

Usage
<<varname>>

a=a+1; //increments the value of a by 1

C TOKENS:

C Tokens

Keywords

Identifiers

constants

Special

symbols

strings operators

DATA TYPES IN C

 Primitive data types

 int, float, double, char

 Derived data types

 Arrays come under this category

 Arrays can contain collection of int or float or char or

double data

 User defined data types

 Structures and enum fall under this category.

VARIABLE

 A variable is a data name that may be used to

store data value

VARIABLE NAMES- RULES

 Should not be a reserved word like int etc..

 Should start with a letter or an underscore(_)

 Can contain letters, numbers or underscore.

 No other special characters are allowed including
space

 Variable names are case sensitive

 A and a are different.

DECLARING VARIABLES

 data_type variable_name;

 data_type v1,v2,v3…vn;

 Example

 int roll_no;

 float a,b,c;

INPUT AND OUTPUT

 Input

 scanf(“%d”,&a);

 Gets an integer value from the user and stores it

under the name “a”

 Output

 printf(“%d”,a)

 Prints the value present in variable a on the screen

OPERATORS

 C operators can be classified into following

categories

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Conditional operators

 Bitwise operators

 Special operators

ARITHMETIC OPERATORS

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo division

RELATIONAL OPERATORS

Opeartor Meaning

< Is less than

<= Is less than or equal to

> Is greater than

>= Is greater than or equal to

== Is equal to

!= Is not equal to

LOGICAL OPERATOR

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

ASSIGNMENT OPERATOR

Statement with simple

assignment operator

Statement with shorthand

operator

a=a+1 a+=1

a=a-1 a-=1

a=a*(n+1) a*=n+1

a=a/(n+1) a/=n+1

a=a%b a%=b

INCREMENT AND DECREMENT OPERATOR

Pre increment

++m;

Post increment

m++;

Pre decrement

--m;

Post decrement

m--;

BITWISE OPERATORS

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

<< Shift left

>> Shift right

SPECIAL OPERATORS

 The comma operator

 sizeof operator

ARITHMETIC EXPRESSIONS

 An arithmetic expression is a combination of

variables,constants and operators arranged as

per syntax of the language.

EVALUATION OF EXPRESSION

 Expressions are evaluated using an assignment

statement of the form

 Variable= expression ;

 Example

 x=a*b-c;

 y=b/c*a;

 z=a-b/c+d;

PRECENDENCE OF ARITHMETIC

OPERATORS

High priority * / %

Low priority + -

RULES FOR EVALUATION OF EXPRESSION

 First, parenthesized sun expression from left to

right are evaluated

 If parenthesizes are nested, the evaluation begins

with the inner most sub expression

 The precedence rule is applied in determining the

order of application of operators in evaluating

sub expression

 Arithmetic expressions are evaluated from left to

right using rules of precedence

 When parentheses are used, the expressions

within parentheses assume highest priority.

INPUT AND OUTPUT OPERATIONS

 Reading a character

 Variable_name=getchar();

Example

 char name;

 name= getchar();

FORMATTED INPUT

 Formatted input refers to an input data that has

been arranged in a particular format

 formatted data with scanf() function

 scanf(“control string”,arg1,arg2…arg n);

 Control string specifies the field format in which

data is to be entered and arguments arg1,arg2

etc specify address of location where data is

stored

PARTS OF CONTROL STRING OR FORMAT

STRING

 scanf(“format string”,&var1,&var2,…&varn);

 Format string consists of

 Conversion character(%)

 Data type character(or type specifier)

 Example

 Scanf(“%d%f%d”,&a,&b,&c);

FORMATTED OUTPUT

 printf statement provides certain features that

can be effectively exploited to control the

alignment and spacing of printouts on terminal

 General form of printf statement

 Printf(“control string”,arg1,arg2…argn);

 Parts of control string

 Format string consists of

 Conversion character(%)

 Data type character(or type specifier)

 Example

 printf(the value stored in x is%d”,x);

FLOW CONTROL

 Flow control statements are used to alter the

execution flow of a program.

 control statements

Branching if,if-else,if-else-if

Looping while,do while,for

Jumping break,continue,goto

DECISION MAKING STATEMENTS

 If statement

 Syntax

if(condition)

{

 statement1;

 statement2;

}

Example

 if(marks>=35)

 {

 printf(“you are pass”);

 }

 If-else construct

 Syntax

 if(condition)

 {

 statement block1

 }

 else

 {

 statement block2

 }

 If-else-if

 Syntax

 if(condition1)

{

 statement block1

}

elseif(condition2)

{

 statement block2

}

elseif(condition3)

{

 statement block3

}

SWITCH CASE CONSTRUCT

 Syntax

 Switch(variable)

 {

 case value 1:

 statement block1

 break;

 case value n:

 statement block n;

 break;

 default:

 default statement block

 break;

}

ITERATION OR LOOPING

 The concept of repeating the execution of a

particular block of statements till a conditional

expression is satisfied is called as iteration or

looping.

FOR LOOPS

The syntax of for loop is
for(initialisation; condition checking ;increment/decrement)

{

 set of statements

}

Eg: Program to print Hello 10 times

for(I=0;I<10;I++)

{

 printf(“Hello”);

}

WHILE LOOP

 The syntax for while loop

 while(condn)

 {

 statements;

 }

Eg:

 a=10;

 while(a != 0) Output: 10987654321

 {

 printf(“%d”,a);

 a--;

 }

DO WHILE LOOP

 The syntax of do while loop

do

{

 set of statements

}while(condn);

Eg:

i=10; Output:

do 10987654321

{

 printf(“%d”,i);

 i--;

}while(i!=0)

JUMPING STATEMENTS

 goto statement

 syntax:

 goto lable

 statements

 …..

 label: statements

 statements

 …..

 break statement:

 is used to terminate the loops.

o continue statement:

 is used to skip the remaining statements in the

loop body and take control to the beginning of the

loop.

PROCEDURES

 Procedure is a function whose return type is void

 Functions will have return types int, char,
double, float or even structs and arrays

 Return type is the data type of the value that is
returned to the calling point after the called
function execution completes

FUNCTIONS AND PARAMETERS
Syntax of function

Declaration section

<<Returntype>> funname(parameter list);

Definition section

<<Returntype>> funname(parameter list)

{

 body of the function

}

Function Call

Funname(parameter);

EXAMPLE FUNCTION

#include<stdio.h>

void fun(int a); //declaration

int main()

{

 fun(10); //Call

}

void fun(int x) //definition

{

 printf(“%d”,x);

}

ACTUAL AND FORMAL PARAMETERS

 Actual parameters are those that are used during

a function call

 Formal parameters are those that are used in

function definition and function declaration

STRING FUNCTIONS

 strlen(str) – To find length of string str

 strrev(str) – Reverses the string str as rts

 strcat(str1,str2) – Appends str2 to str1

and returns str1

 strcpy(st1,st2) – copies the content of st2

to st1

 strcmp(s1,s2) – Compares the two string

s1 and s2

 strcmpi(s1,s2) – Case insensitive

comparison of strings

NUMERIC FUNCTIONS

 pow(n,x) – evaluates n^x

 ceil(1.3) – Returns 2

 floor(1.3) – Returns 1

 abs(num) – Returns absolute value

 log(x) - Logarithmic value

 sin(x)

 cos(x)

 tan(x)

ARRAYS

 Arrays fall under user defined data type

 Arrays are collection of data that belong to same

data type

 Arrays are collection of homogeneous data

 Array elements can be accessed by its position in

the array called as index

ARRAYS
Array index starts with zero

The last index in an array is num – 1 where
num is the no of elements in a array

 int a[5] is an array that stores 5 integers

a[0] is the first element where as a[4] is the
fifth element

We can also have arrays with more than one
dimension

 float a[5][5] is a two dimensional array. It can
store 5x5 = 25 floating point numbers

The bounds are a[0][0] to a[4][4]

TYPES OF ARRAY

 One dimensional array

 Two dimensional array

 Multidimensional array

DECLARATION OF ONE DIMENSIONAL

ARRAY

 type variable_name[size];

o type specifies the type of element that will be

contained in the array such as int, float or char.

o Size indicates the maximum number of elements

that can be stored inside the array.

 example:

 int group[10];

 float height[50];

TWO DIMENSIONAL ARRAY

 C allows us to define tables of items by using two

dimensional array

DECLARATION OF TWO DIMENSIONAL ARRAY

 Type array_name[row_size][column_size];

 Example:

 int a[4][3];

 coloumn-0 coloumn-1 coloumn-2

Row-0

Row-1

Row-2

Row-3

a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

a[2][0] a[2][1] a[2][2]

a[3][0] a[3][1] a[3][2]

INITIALIZATION OF ARRAYS

 Initializing one dimensional array

 Type array_name[size]={list of values};

 Example:

 int number[3]={0,0,0};

 Initializing twodimensional array

 Type array_name[row][column]={list of values};

 Example:

 int number[2][3]={{0,0,0},{1,1,1}};

MULTI DIMENSIONAL ARRAY

 C allows array of three or more dimensions.

 The exact limit is determined by compiler.

 General form of a multi dimensional array is:

 Type array_name[s1][s2][s3]….[sn];

 where si is the size of the ith dimension.

STRUCTURES

Structures are user defined data types

 It is a collection of heterogeneous data

 It can have integer, float, double or
character data in it

We can also have array of structures

struct <<structname>>

{

 members;

}element;

We can access element.members;

STRUCTURES

struct Person

{

int id;

char name[5];

}P1;

P1.id = 1;

P1.name = “vasu”;

TYPE DEF

 The typedef operator is used for creating alias of

a data type

 For example I have this statement

typedef int integer;

Now I can use integer in place of int

i.e instead of declaring int a;, I can use

integer a;

This is applied for structures too.

POINTERS

 Pointer is a special variable that stores address

of another variable

 Addresses are integers. Hence pointer stores

integer data

 Size of pointer = size of int

 Pointer that stores address of integer variable is

called as integer pointer and is declared as int

*ip;

POINTERS

 Pointers that store address of a double, char and
float are called as double pointer, character
pointer and float pointer respectively.

 char *cp

 float *fp

 double *dp;

 Assigning value to a pointer

int *ip = &a; //a is an int already declared

EXAMPLES

int a;

a=10; //a stores 10

int *ip;

ip = &a; //ip stores address of a (say 1000)

ip : fetches 1000

*ip : fetches 10

* Is called as dereferencing operator

CALL BY VALUE

Calling a function with parameters passed
as values

int a=10; void fun(int a)

fun(a); {

 defn;

 }

Here fun(a) is a call by value.

Any modification done with in the function
is local to it and will not be effected
outside the function

CALL BY REFERENCE

Calling a function by passing pointers as
parameters (address of variables is passed
instead of variables)

int a=1; void fun(int *x)

fun(&a); {

 defn;

 }

Any modification done to variable a will
effect outside the function also

EXAMPLE PROGRAM – CALL BY VALUE

#include<stdio.h>

void main()

{

 int a=10;

 printf(“%d”,a); a=10

 fun(a);

 printf(“%d”,a); a=10

}

void fun(int x)

{

 printf(“%d”,x) x=10

 x++;

 printf(“%d”,x); x=11

}

EXPLANATION

EXAMPLE PROGRAM – CALL BY

REFERENCE

#include<stdio.h>

void main()

{

 int a=10;

 printf(“%d”,a); a=10

 fun(a);

 printf(“%d”,a); a=11

}

void fun(int x)

{

 printf(“%d”,x) x=10

 x++;

 printf(“%d”,x); x=11

}

EXPLANATION

a and x are referring to same location. So

value will be over written.

CONCLUSION

 Call by value => copying value of variable in
another variable. So any change made in the copy
will not affect the original location.

 Call by reference => Creating link for the
parameter to the original location. Since the
address is same, changes to the parameter will
refer to original location and the value will be
over written.

