
IBM-PC Organization

16-Bit Intel Processor Architecture

 A-16 bit microprocessor can operate

on 16 bits of data at a time.

 8086/8088 have the simplest structure

8086/8088 have the same instruction

set, it forms the basic set of

instructions for other Intel families.

Organization of the 8088/8086

Organization of the 8088/8086

2 main components:

. Execution Unit (EU).

. Bus Interface Unit (BIU).

EU: ALU + Registers (AX, BX, CX, DX, SI, DI,

BP, and SP) + FLAGS register.

ALU: performs arithmetic & logic

operations.

Registers: store data

FLAGS register: Individual bits reflect the

result of a computation.

Organization of the 8088/8086

BIU: facilitates communication between the

EU & the memory or I/O circuits.

Responsible for transmitting

addresses, data, and control signals on the

buses.

Registers (CS, DS, ES, SS, and IP) hold

addresses of memory locations.

IP (instruction pointer) contain the

address of the next instruction to be

executed by the EU.

Organization of the 8088/8086

16-bit registers, 1M Bytes Memory

Registers:

Information is stored in registers

Registers are classified according

to the functions they perform

Registers

 Data registers: 4 general data registers

hold data for an operation.

 Address registers: (segment, pointer

and index registers) hold the address of

an instruction or data.

 Status register: FLAG register keeps

the current states of the processor.

 14 16-bit registers

Register

General Data Register: Used for general

data manipulation.

 They are 16-bit registers that
can also be used as two 8 bit
registers: low and high bytes
can be accessed separately →
more registers to use when
dealing with byte-size data.

 In addition to being general-
purpose registers, they
perform special functions

AX (Accumulator)

 Most efficient register for arithmetic, logic

operations and data transfer: the use of

AX generates the shortest machine code.

 In multiplication and division operations,

one of the numbers involved must be in Al

or AX

BX (Base)

Can hold addresses (offset)

CX (Counter)

Counter for looping operations: loop

counter, in REP instruction, and in the

shift and rotate bits

DX (Data):

Used in multiply and divide, also

used in I/O operations

The 8086 processor

The 8086 processor assign a 20-bit physical

address to its memory locations.

2 → 1 Mbytes

20 bits → 5 hex digits

first addresses: 00000, 00001,…,0000A,…FFFFF.

registers are 16-bits → can address only 2 =

64 K Bytes.

→ Partition the memory into segments

20

16

Memory Segment

 Is a block of 2 (64) K Bytes consecutive memory
bytes.

 Each segment is identified by a 16-bit number
called segment number, starting with 0000 up to
FFFFh . Segment registers hold segment number.

 Within a segment, a memory location is specified by
giving an offset (16-bit) = It is the number of bytes
from the beginning of the segment (0→ FFFFh).

16

Memory Segment

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

One Segment
8000:0000

8000:FFFF

segment offset

Segment : Offset Address

 A memory location may be specified by a

segment number and offset (logical

address).

Example :

A4FB : 4872
h

Segment
Offset

Offset : is the distance from the

beginning to a particular location in

the segment.

Segment number : defines the

starting of the segment within the

memory space.

Segmented Memory

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

8000:0000

8000:FFFF

seg ofs

8000:0250

0250

one segment

Start location of the segment

must be 20 bits  the absolute

address is obtained by appending

a hexadecimal zero to the

segment number , i.e.

multiplying by 16(10h).

Physical Address

Physical Address : is equal to

segment number X 10 + Offset
h

Physical Address for A4FB : 4872

A4FB0

+

4872

A9822 (20 bits)

Location of Segments

Segment 0
starts at address 0000:0000  00000

h

ends at address 0000:FFFF  0FFFF
h

Location of Segments

Segment 1
starts at address 0001:0000  00010

h

ends at address 0001:FFFF  1000F
h

Overlapping between segments

16

Location of Segments

 The segments start every 10 = 16 bytes

(called Paragraph) and the starting

address of a segment always ends with a

hex digit 0.

 Paragraph boundary is an address

divisible by 16.

Solution
a) Segment 1256 :

offset = 1256A - 12560 = A

Address  1256 : 000A

b) Segment 1240 :

offset = 1256A - 12400 = 0016A

Address  1240 : 016A

Program Segments

 A typical machine language program

consists of:

◦ instructions (CODES)

◦ data

◦ stack  is a data structure used by

the processor to implement procedure

calls.

 Codes , data , and stack are loaded into

different memory segments :

◦ Code segment CS : holds segment number

of the code segment.

◦ Data Segment DS : holds segment number

of the data segment.

◦ Extra Segment ES :extra segment : holds

alternate segment number of the data

segment.

◦ Stack Segment SS : holds segment number

of the stack segment.

Program Segment

A program segment can

occupy less than 64 Kbytes.

Overlapping permits

program segments that are

less than 64 KB to be placed

close together.

- At any time, only those memory
locations addressed by the 4
segment registers are
accessible; → only 4 memory
segments are active. However,
the contents of a segment
register can be modified by a
program to address different
segments.

Pointer and Index Registers

SP, BP, SI, DI

Used for offset of data, often

used as pointers. Unlike

segment registers, they can be

used in arithmetic and other

operations.

Pointer Registers

SP (Stack Pointer): Used with SS

for accessing the stack segment.

BP (Base Pointer): Used with SS

to access data on the stack.

However, unlike SP, BP can be

used to access data in other

segments.

Index Registers

SI (Source Index): Source of

string operations. Used with

DS (or ES).

DI (Destination Index):

Destination of string operation.

Used with ES (or DS).

Instruction pointer

IP (Instruction pointer):
Points to the next instruction.

Used with CS.

Flags register

Flags: Bits specify status of CPU

and information about the results

of the arithmetic operations.

Organization of the PC

A computer is made of:
Hardware & software.
Software controls the H/W
operations.

The purpose of the OS is to
coordinate the operations of
all the devices that make up
the computer systems.

Some of the OS functions

1) reading and executing the

commands typed by the user.

2) performing I/O operations

3) generating error messages

4) managing memory and other

resources.

Very popular O.S. for IBM PC is DOS.

 DOS manage only 1 M byte memory,
does not support multitasking.

 DOS is a collection of routines that
coordinates the operations of the
computer. The routine that executes user
command is COMMAND.COM.

 Information stored on disk is organized
into files. A file has a name and an
optional extension.

 The BIOS routines are used to perform I/O
operations.

 DOS routines operate over the entire PC
family.

 BIOS routines are machine specific.

 The compatibility of PC clones with the IBM
PC depends on how well their BIOS routines
match those of the IBM PC

 The addresses of BIOS routines (interrupt
vectors) are placed in memory starting at
00000h.

I/O Ports Addresses

 I/O devices are connected to the

computer through I/O circuits. Each of

them contains several registers called

ports.

 I/O ports have addresses I/O

addresses .

 8086/8088 supports 64 KB of I/O ports.

Example: keyboard controller: 60 - 63
h h

Start-up operation

 When PC is powered on CS is set to

FFFFh & IP is set to 0000h. PC

executes the instruction with the address

FFFF0h. This instruction transfers the

control to the BIOS routines.

 BIOS loads the boot program.

 Boot program loads the OS and

COMMAND.COM is given control

