
Programmed and

Interrupts and

Exceptions

Simplified Architecture Diagram

Central

Processing

Unit

Main

Memory

I/O

device

I/O

device

I/O

device

I/O

device

system bus

Motivation

 Utility of a general-purpose computer depends on its

ability to interact with I/O devices attached to it (e.g.,

keyboard, display, disk-drives, network, etc.)

 Devices require a prompt response from the CPU

when various events occur, even when the CPU is

busy running a program

 Need a mechanism for a device to ―gain CPU‘s

attention‖

 Interrupts provide a way doing this

CPU’s ‘fetch-execute’ cycle

Fetch instruction at IP

Advance IP to next instruction

Decode the fetched instruction

Execute the decoded instruction

Interrupt?

no

Save context

Get INTR ID

Lookup ISR

Execute ISR

yes IRET

User

Program

IP

ld

add

st

mul

ld

sub

bne

add

jmp

…

Interrupts

 Forcibly change normal flow of control

 Similar to context switch (but lighter weight)

 Hardware saves some context on stack; Includes

interrupted instruction if restart needed

 Enters kernel at a specific point; kernel then

figures out which interrupt handler should run

 Execution resumes with special ―iret‖ instruction

 Many different types of interrupts

Types of Interrupts

 Asynchronous

 From external source, such as I/O device

 Not related to instruction being executed

 Synchronous (also called exceptions)

 Processor-detected exceptions:

 Faults — correctable; offending instruction is retried

 Traps — often for debugging; instruction is not retried

 Aborts — major error (hardware failure)

 Programmed exceptions:

 Requests for kernel intervention (software intr/syscalls)

Faults

 Instruction would be illegal to execute

 Examples:

 Writing to a memory segment marked ‗read-only‘

 Reading from an unavailable memory segment (on disk)

 Executing a ‗privileged‘ instruction

 Detected before incrementing the IP

 The causes of ‗faults‘ can often be ‗fixed‘

 If a ‗problem‘ can be remedied, then the CPU can

just resume its execution-cycle

Traps

 A CPU might have been programmed to
automatically switch control to a ‗debugger‘
program after it has executed an instruction

 That type of situation is known as a ‗trap‘

 It is activated after incrementing the IP

Error Exceptions

 Most error exceptions — divide by zero, invalid
operation, illegal memory reference, etc. — translate
directly into signals

 This isn‘t a coincidence. . .

 The kernel‘s job is fairly simple: send the
appropriate signal to the current process
 force_sig(sig_number, current);

 That will probably kill the process, but that‘s not the
concern of the exception handler

 One important exception: page fault

 An exception can (infrequently) happen in the kernel
 die(); // kernel oops

Intel-Reserved ID-Numbers

 Of the 256 possible interrupt ID numbers, Intel reserves the first 32
for ‗exceptions‘

 OS‘s such as Linux are free to use the remaining 224 available
interrupt ID numbers for their own purposes (e.g., for service-
requests from external devices, or for other purposes such as
system-calls)

 Examples:

 0: divide-overflow fault

 6: Undefined Opcode

 7: Coprocessor Not Available

 11: Segment-Not-Present fault

 12: Stack fault

 13: General Protection Exception

 14: Page-Fault Exception

Interrupt Hardware

x86

CPU

Master

PIC

(8259)

Slave

PIC

(8259)
INTR

Programmable Interval-TimerKeyboard Controller

Real-Time Clock

Legacy PC Design

(for single-proc

systems)

SCSI Disk

Ethernet

 I/O devices have (unique or shared) Interrupt Request

Lines (IRQs)

 IRQs are mapped by special hardware to interrupt

vectors, and passed to the CPU

 This hardware is called a Programmable Interrupt

Controller (PIC)

IRQs

The `Interrupt Controller’

 Responsible for telling the CPU when a specific
external device wishes to ‗interrupt‘

 Needs to tell the CPU which one among several
devices is the one needing service

 PIC translates IRQ to vector

 Raises interrupt to CPU

 Vector available in register

 Waits for ack from CPU

 Interrupts can have varying priorities

 PIC also needs to prioritize multiple requests

 Possible to ―mask‖ (disable) interrupts at PIC or CPU

 Early systems cascaded two 8 input chips (8259A)

Example: Interrupts on 80386

 80386 core has one interrupt line, one interrupt

acknowledge line

 Interrupt sequence:

 Interrupt controller raises INT line

 80386 core pulses INTA line low, allowing INT to go low

 80386 core pulses INTA line low again, signaling controller

to put interrupt number on data bus

INT:

INTA:

Data bus: Interrupt #

Multi-CORE CPU

Multiple Logical Processors

CPU

0

CPU

1 I/O

APIC
LOCAL

APIC

LOCAL

APIC

Advanced Programmable Interrupt Controller is needed to

perform ‗routing‘ of I/O requests from peripherals to CPUs

(The legacy PICs are masked when the APICs are enabled)

Maximizing Parallelism

 You want to keep all I/O devices as busy as

possible

 In general, an I/O interrupt represents the

end of an operation; another request should

be issued as soon as possible

 Most devices don‘t interfere with each others‘

data structures; there‘s no reason to block

out other devices

Handling Nested Interrupts

 As soon as possible, unmask the global

interrupt

 As soon as reasonable, re-enable interrupts

from that IRQ

 But that isn‘t always a great idea, since it

could cause re-entry to the same handler

 IRQ-specific mask is not enabled during

interrupt-handling

Nested Execution

 Interrupts can be interrupted

 By different interrupts; handlers need not be reentrant

 No notion of priority in Linux

 Small portions execute with interrupts disabled

 Interrupts remain pending until acked by CPU

 Exceptions can be interrupted

 By interrupts (devices needing service)

 Exceptions can nest two levels deep

 Exceptions indicate coding error

 Exception code (kernel code) shouldn‘t have bugs

 Page fault is possible (trying to touch user data)

Interrupt Handling Philosophy

 Do as little as possible in the interrupt handler

 Defer non-critical actions till later

 Structure: top and bottom halves

 Top-half: do minimum work and return (ISR)

 Bottom-half: deferred processing (softirqs,

tasklets, workqueues, kernel threads)

Top half

softirqtasklet workqueue kernel thread
Bottom

half

Interrupt Stack

 When an interrupt occurs, what stack is
used?

 Exceptions: The kernel stack of the current
process, whatever it is, is used (There‘s always
some process running — the ―idle‖ process, if
nothing else)

 Interrupts: hard IRQ stack (1 per processor)

 SoftIRQs: soft IRQ stack (1 per processor)

 These stacks are configured in the IDT and
TSS at boot time by the kernel

Hardware Handling
 On entry:

 Which vector?

 Get corresponding descriptor in IDT

 Find specified descriptor in GDT (for handler)

 Check privilege levels (CPL, DPL)

 If entering kernel mode, set kernel stack

 Save eflags, cs, (original) eip on stack

 Jump to appropriate handler

 Assembly code prepares C stack, calls handler

 On return (i.e. iret):

 Restore registers from stack

 If returning to user mode, restore user stack

 Clear segment registers (if privileged selectors)

Interrupt Handling

 More complex than exceptions

 Requires registry, deferred processing, etc.

 Three types of actions:

 Critical: Top-half (interrupts disabled – briefly!)

 Example: acknowledge interrupt

 Non-critical: Top-half (interrupts enabled)

 Example: read key scan code, add to buffer

 Non-critical deferrable: Do it ―later‖ (interrupts enabled)

 Example: copy keyboard buffer to terminal handler process

 Softirqs, tasklets

