
Programmed and

Interrupts and

Exceptions

Simplified Architecture Diagram

Central

Processing

Unit

Main

Memory

I/O

device

I/O

device

I/O

device

I/O

device

system bus

Motivation

 Utility of a general-purpose computer depends on its

ability to interact with I/O devices attached to it (e.g.,

keyboard, display, disk-drives, network, etc.)

 Devices require a prompt response from the CPU

when various events occur, even when the CPU is

busy running a program

 Need a mechanism for a device to ―gain CPU‘s

attention‖

 Interrupts provide a way doing this

CPU’s ‘fetch-execute’ cycle

Fetch instruction at IP

Advance IP to next instruction

Decode the fetched instruction

Execute the decoded instruction

Interrupt?

no

Save context

Get INTR ID

Lookup ISR

Execute ISR

yes IRET

User

Program

IP

ld

add

st

mul

ld

sub

bne

add

jmp

…

Interrupts

 Forcibly change normal flow of control

 Similar to context switch (but lighter weight)

 Hardware saves some context on stack; Includes

interrupted instruction if restart needed

 Enters kernel at a specific point; kernel then

figures out which interrupt handler should run

 Execution resumes with special ―iret‖ instruction

 Many different types of interrupts

Types of Interrupts

 Asynchronous

 From external source, such as I/O device

 Not related to instruction being executed

 Synchronous (also called exceptions)

 Processor-detected exceptions:

 Faults — correctable; offending instruction is retried

 Traps — often for debugging; instruction is not retried

 Aborts — major error (hardware failure)

 Programmed exceptions:

 Requests for kernel intervention (software intr/syscalls)

Faults

 Instruction would be illegal to execute

 Examples:

 Writing to a memory segment marked ‗read-only‘

 Reading from an unavailable memory segment (on disk)

 Executing a ‗privileged‘ instruction

 Detected before incrementing the IP

 The causes of ‗faults‘ can often be ‗fixed‘

 If a ‗problem‘ can be remedied, then the CPU can

just resume its execution-cycle

Traps

 A CPU might have been programmed to
automatically switch control to a ‗debugger‘
program after it has executed an instruction

 That type of situation is known as a ‗trap‘

 It is activated after incrementing the IP

Error Exceptions

 Most error exceptions — divide by zero, invalid
operation, illegal memory reference, etc. — translate
directly into signals

 This isn‘t a coincidence. . .

 The kernel‘s job is fairly simple: send the
appropriate signal to the current process
 force_sig(sig_number, current);

 That will probably kill the process, but that‘s not the
concern of the exception handler

 One important exception: page fault

 An exception can (infrequently) happen in the kernel
 die(); // kernel oops

Intel-Reserved ID-Numbers

 Of the 256 possible interrupt ID numbers, Intel reserves the first 32
for ‗exceptions‘

 OS‘s such as Linux are free to use the remaining 224 available
interrupt ID numbers for their own purposes (e.g., for service-
requests from external devices, or for other purposes such as
system-calls)

 Examples:

 0: divide-overflow fault

 6: Undefined Opcode

 7: Coprocessor Not Available

 11: Segment-Not-Present fault

 12: Stack fault

 13: General Protection Exception

 14: Page-Fault Exception

Interrupt Hardware

x86

CPU

Master

PIC

(8259)

Slave

PIC

(8259)
INTR

Programmable Interval-TimerKeyboard Controller

Real-Time Clock

Legacy PC Design

(for single-proc

systems)

SCSI Disk

Ethernet

 I/O devices have (unique or shared) Interrupt Request

Lines (IRQs)

 IRQs are mapped by special hardware to interrupt

vectors, and passed to the CPU

 This hardware is called a Programmable Interrupt

Controller (PIC)

IRQs

The `Interrupt Controller’

 Responsible for telling the CPU when a specific
external device wishes to ‗interrupt‘

 Needs to tell the CPU which one among several
devices is the one needing service

 PIC translates IRQ to vector

 Raises interrupt to CPU

 Vector available in register

 Waits for ack from CPU

 Interrupts can have varying priorities

 PIC also needs to prioritize multiple requests

 Possible to ―mask‖ (disable) interrupts at PIC or CPU

 Early systems cascaded two 8 input chips (8259A)

Example: Interrupts on 80386

 80386 core has one interrupt line, one interrupt

acknowledge line

 Interrupt sequence:

 Interrupt controller raises INT line

 80386 core pulses INTA line low, allowing INT to go low

 80386 core pulses INTA line low again, signaling controller

to put interrupt number on data bus

INT:

INTA:

Data bus: Interrupt #

Multi-CORE CPU

Multiple Logical Processors

CPU

0

CPU

1 I/O

APIC
LOCAL

APIC

LOCAL

APIC

Advanced Programmable Interrupt Controller is needed to

perform ‗routing‘ of I/O requests from peripherals to CPUs

(The legacy PICs are masked when the APICs are enabled)

Maximizing Parallelism

 You want to keep all I/O devices as busy as

possible

 In general, an I/O interrupt represents the

end of an operation; another request should

be issued as soon as possible

 Most devices don‘t interfere with each others‘

data structures; there‘s no reason to block

out other devices

Handling Nested Interrupts

 As soon as possible, unmask the global

interrupt

 As soon as reasonable, re-enable interrupts

from that IRQ

 But that isn‘t always a great idea, since it

could cause re-entry to the same handler

 IRQ-specific mask is not enabled during

interrupt-handling

Nested Execution

 Interrupts can be interrupted

 By different interrupts; handlers need not be reentrant

 No notion of priority in Linux

 Small portions execute with interrupts disabled

 Interrupts remain pending until acked by CPU

 Exceptions can be interrupted

 By interrupts (devices needing service)

 Exceptions can nest two levels deep

 Exceptions indicate coding error

 Exception code (kernel code) shouldn‘t have bugs

 Page fault is possible (trying to touch user data)

Interrupt Handling Philosophy

 Do as little as possible in the interrupt handler

 Defer non-critical actions till later

 Structure: top and bottom halves

 Top-half: do minimum work and return (ISR)

 Bottom-half: deferred processing (softirqs,

tasklets, workqueues, kernel threads)

Top half

softirqtasklet workqueue kernel thread
Bottom

half

Interrupt Stack

 When an interrupt occurs, what stack is
used?

 Exceptions: The kernel stack of the current
process, whatever it is, is used (There‘s always
some process running — the ―idle‖ process, if
nothing else)

 Interrupts: hard IRQ stack (1 per processor)

 SoftIRQs: soft IRQ stack (1 per processor)

 These stacks are configured in the IDT and
TSS at boot time by the kernel

Hardware Handling
 On entry:

 Which vector?

 Get corresponding descriptor in IDT

 Find specified descriptor in GDT (for handler)

 Check privilege levels (CPL, DPL)

 If entering kernel mode, set kernel stack

 Save eflags, cs, (original) eip on stack

 Jump to appropriate handler

 Assembly code prepares C stack, calls handler

 On return (i.e. iret):

 Restore registers from stack

 If returning to user mode, restore user stack

 Clear segment registers (if privileged selectors)

Interrupt Handling

 More complex than exceptions

 Requires registry, deferred processing, etc.

 Three types of actions:

 Critical: Top-half (interrupts disabled – briefly!)

 Example: acknowledge interrupt

 Non-critical: Top-half (interrupts enabled)

 Example: read key scan code, add to buffer

 Non-critical deferrable: Do it ―later‖ (interrupts enabled)

 Example: copy keyboard buffer to terminal handler process

 Softirqs, tasklets

