
Programmed and 

Interrupts and 

Exceptions



Simplified Architecture Diagram

Central

Processing

Unit

Main

Memory

I/O

device

I/O

device

I/O

device

I/O

device

system bus



Motivation

 Utility of a general-purpose computer depends on its 

ability to interact with I/O devices attached to it (e.g., 

keyboard, display, disk-drives, network, etc.)

 Devices require a prompt response from the CPU 

when various events occur, even when the CPU is 

busy running a program

 Need a mechanism for a device to ―gain CPU‘s 

attention‖

 Interrupts provide a way doing this 
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Interrupts

 Forcibly change normal flow of control

 Similar to context switch (but lighter weight)

 Hardware saves some context on stack; Includes 

interrupted instruction if restart needed

 Enters kernel at a specific point; kernel then 

figures out which interrupt handler should run

 Execution resumes with special ―iret‖ instruction

 Many different types of interrupts



Types of Interrupts

 Asynchronous

 From external source, such as I/O device

 Not related to instruction being executed

 Synchronous (also called exceptions)

 Processor-detected exceptions:

 Faults — correctable; offending instruction is retried

 Traps — often for debugging; instruction is not retried

 Aborts — major error (hardware failure)

 Programmed exceptions:

 Requests for kernel intervention (software intr/syscalls)



Faults

 Instruction would be illegal to execute

 Examples:

 Writing to a memory segment marked ‗read-only‘

 Reading from an unavailable memory segment (on disk)

 Executing a ‗privileged‘ instruction

 Detected before incrementing the IP

 The causes of ‗faults‘ can often be ‗fixed‘

 If a ‗problem‘ can be remedied, then the CPU can 

just resume its execution-cycle



Traps

 A CPU might have been programmed to 
automatically switch control to a ‗debugger‘ 
program after it has executed an instruction 

 That type of situation is known as a ‗trap‘

 It is activated after incrementing the IP



Error Exceptions

 Most error exceptions — divide by zero, invalid 
operation, illegal memory reference, etc. — translate 
directly into signals

 This isn‘t a coincidence. . .

 The kernel‘s job is fairly simple: send the 
appropriate signal to the current process
 force_sig(sig_number, current);

 That will probably kill the process, but that‘s not the 
concern of the exception handler

 One important exception: page fault

 An exception can (infrequently) happen in the kernel
 die(); // kernel oops



Intel-Reserved ID-Numbers

 Of the 256 possible interrupt ID numbers, Intel reserves the first 32 
for ‗exceptions‘

 OS‘s such as Linux are free to use the remaining 224 available 
interrupt ID numbers for their own purposes (e.g., for service-
requests from external devices, or for other purposes such as 
system-calls)

 Examples:

 0: divide-overflow fault

 6: Undefined Opcode

 7: Coprocessor Not Available

 11: Segment-Not-Present fault

 12: Stack fault

 13: General Protection Exception

 14: Page-Fault Exception



Interrupt Hardware
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 I/O devices have (unique or shared) Interrupt Request 

Lines (IRQs)

 IRQs are mapped by special hardware to interrupt 

vectors, and passed to the CPU
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The `Interrupt Controller’

 Responsible for telling the CPU when a specific 
external device wishes to ‗interrupt‘

 Needs to tell the CPU which one among several 
devices is the one needing service 

 PIC translates IRQ to vector

 Raises interrupt to CPU

 Vector available in register

 Waits for ack from CPU

 Interrupts can have varying priorities

 PIC also needs to prioritize multiple requests

 Possible to ―mask‖ (disable) interrupts at PIC or CPU

 Early systems cascaded two 8 input chips (8259A)



Example: Interrupts on 80386

 80386 core has one interrupt line, one interrupt 

acknowledge line

 Interrupt sequence:

 Interrupt controller raises INT line

 80386 core pulses INTA line low, allowing INT to go low

 80386 core pulses INTA line low again, signaling controller 

to put interrupt number on data bus

INT:

INTA:

Data bus: Interrupt #
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Advanced Programmable Interrupt Controller is needed to

perform ‗routing‘ of I/O requests from peripherals to CPUs

(The legacy PICs are masked when the APICs are enabled)



Maximizing Parallelism

 You want to keep all I/O devices as busy as 

possible

 In general, an I/O interrupt represents the 

end of an operation; another request should 

be issued as soon as possible

 Most devices don‘t interfere with each others‘ 

data structures; there‘s no reason to block 

out other devices



Handling Nested Interrupts

 As soon as possible, unmask the global 

interrupt

 As soon as reasonable, re-enable interrupts 

from that IRQ

 But that isn‘t always a great idea, since it 

could cause re-entry to the same handler

 IRQ-specific mask is not enabled during 

interrupt-handling



Nested Execution

 Interrupts can be interrupted

 By different interrupts; handlers need not be reentrant

 No notion of priority in Linux

 Small portions execute with interrupts disabled

 Interrupts remain pending until acked by CPU

 Exceptions can be interrupted

 By interrupts (devices needing service)

 Exceptions can nest two levels deep

 Exceptions indicate coding error

 Exception code (kernel code) shouldn‘t have bugs

 Page fault is possible (trying to touch user data)



Interrupt Handling Philosophy

 Do as little as possible in the interrupt handler

 Defer non-critical actions till later

 Structure: top and bottom halves

 Top-half: do minimum work and return (ISR)

 Bottom-half: deferred processing (softirqs, 

tasklets, workqueues, kernel threads)

Top half

softirqtasklet workqueue kernel thread
Bottom 

half



Interrupt Stack

 When an interrupt occurs, what stack is 
used?

 Exceptions: The kernel stack of the current 
process, whatever it is, is used  (There‘s always 
some process running — the ―idle‖ process, if 
nothing else)

 Interrupts: hard IRQ stack (1 per processor)

 SoftIRQs: soft IRQ stack (1 per processor)

 These stacks are configured in the IDT and 
TSS at boot time by the kernel



Hardware Handling
 On entry:

 Which vector?

 Get corresponding descriptor in IDT

 Find specified descriptor in GDT (for handler)

 Check privilege levels (CPL, DPL)

 If entering kernel mode, set kernel stack

 Save eflags, cs, (original) eip on stack

 Jump to appropriate handler

 Assembly code prepares C stack, calls handler

 On return (i.e. iret):

 Restore registers from stack

 If returning to user mode, restore user stack

 Clear segment registers (if privileged selectors)



Interrupt Handling

 More complex than exceptions

 Requires registry, deferred processing, etc.

 Three types of actions:

 Critical: Top-half (interrupts disabled – briefly!)

 Example: acknowledge interrupt

 Non-critical: Top-half (interrupts enabled)

 Example: read key scan code, add to buffer

 Non-critical deferrable: Do it ―later‖ (interrupts enabled)

 Example: copy keyboard buffer to terminal handler process

 Softirqs, tasklets


