
Stacks and Queues

Stacks and Queues

 A stack is a last in, first out (LIFO) data structure

 Items are removed from a stack in the reverse order from the

way they were inserted

 A queue is a first in, first out (FIFO) data structure

 Items are removed from a queue in the same order as they

were inserted

Array implementation of stacks

 To implement a stack, items are inserted and removed at

the same end (called the top)

 Efficient array implementation requires that the top of

the stack be towards the center of the array, not fixed at

one end

 To use an array to implement a stack, there is need of

both the array itself and an integer

 The integer tells:

 Which location is currently the top of the stack, or

 How many elements are in the stack

Pushing and popping

 If the bottom of the stack is at location 0, then an empty
stack is represented by top = -1 or count = 0

 To add (push) an element, either:
 Increment top and store the element in stk[top], or

 Store the element in stk[count] and increment count

 To remove (pop) an element, either:
 Get the element from stk[top] and decrement top, or

 Decrement count and get the element in stk[count]

top = 3 or count = 4

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

Error checking

 There are two stack errors that can occur:

 Underflow: trying to pop (or peek at) an empty stack

 Overflow: trying to push onto an already full stack

 For underflow, an exception is thrown

 If the catch missed, Java will throw an

ArrayIndexOutOfBounds exception

 For overflow, same things can be done

 Or, user can check for the problem, and copy everything

into a new, larger array

Linked-list implementation of stacks

 Since all the action happens at the top of a stack, a singly-

linked list (SLL) is a fine way to implement it

 The header of the list points to the top of the stack

44 97 23 17

myStack:

 Pushing is inserting an element at the front of the list

 Popping is removing an element from the front of the list

Linked-list implementation details

 With a linked-list representation, overflow will not

happen (unless you exhaust memory, which is

another kind of problem)

 Underflow can happen, and should be handled the

same way as for an array implementation

 When a node is popped from a list, and the node

references an object, the reference (the pointer in

the node) does not need to be set to null

Array implementation of queues

 A queue is a first in, first out (FIFO) data structure

 This is accomplished by inserting at one end (the rear) and

deleting from the other (the front)

 To insert: put new element in location 4, and set rear to 4

 To delete: take element from location 0, and set front to 1

17 23 97 44

0 1 2 3 4 5 6 7

myQueue:

rear = 3front = 0

Array implementation of queues

 Now the array contents “crawl” to the right as elements are
inserted and deleted

 This will be a problem after a while.

17 23 97 44 333After insertion:

23 97 44 333After deletion:

rear = 4front = 1

17 23 97 44Initial queue:

rear = 3front = 0

Circular arrays

 We can treat the array holding the queue elements as

circular (joined at the ends)

44 55 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 1 front = 5

 Elements were added to this queue in the order 11, 22,

33, 44, 55, and will be removed in the same order

 Use: front = (front + 1) % myQueue.length;
and: rear = (rear + 1) % myQueue.length;

Full and empty queues

 If the queue were to become completely full, it would look

like this:

 If we were then to remove all eight elements, making the queue

completely empty, it would look like this:

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5
This is a problem!

Full and empty queues: solutions

 Solution #1: Keep an additional variable

 Solution #2: (Slightly more efficient) Keep a gap between

elements: consider the queue full when it has n-1 elements

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5count = 8

44 55 66 77 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 3 front = 5

Linked-list implementation of queues

 In a queue, insertions occur at one end, deletions at
the other end

 Operations at the front of a singly-linked list (SLL)
are O(1), but at the other end they are O(n)

 Because user have to find the last element each time

 BUT: there is a simple way to use a singly-linked
list to implement both insertions and deletions in
O(1) time

 User always need a pointer to the first thing in the list

 User can keep an additional pointer to the last thing in the
list

Adding a node

17

Node to be

enqueued

To enqueue (add) a node:

Find the current last node

Change it to point to the new last node

Change the last pointer in the list header

2344

last
first

97

Removing a node

 To dequeue (remove) a node:

 Copy the pointer from the first node into the header

44 97 23 17

last
first

Queue implementation details

 With an array implementation:

 There are both overflow and underflow

 Deleted elements should be set to null

 With a linked-list implementation:

 only underflow

 overflow is a global out-of-memory condition

 there is no reason to set deleted elements to null

