
Stacks and Queues

Stacks and Queues

 A stack is a last in, first out (LIFO) data structure

 Items are removed from a stack in the reverse order from the

way they were inserted

 A queue is a first in, first out (FIFO) data structure

 Items are removed from a queue in the same order as they

were inserted

Array implementation of stacks

 To implement a stack, items are inserted and removed at

the same end (called the top)

 Efficient array implementation requires that the top of

the stack be towards the center of the array, not fixed at

one end

 To use an array to implement a stack, there is need of

both the array itself and an integer

 The integer tells:

 Which location is currently the top of the stack, or

 How many elements are in the stack

Pushing and popping

 If the bottom of the stack is at location 0, then an empty
stack is represented by top = -1 or count = 0

 To add (push) an element, either:
 Increment top and store the element in stk[top], or

 Store the element in stk[count] and increment count

 To remove (pop) an element, either:
 Get the element from stk[top] and decrement top, or

 Decrement count and get the element in stk[count]

top = 3 or count = 4

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

Error checking

 There are two stack errors that can occur:

 Underflow: trying to pop (or peek at) an empty stack

 Overflow: trying to push onto an already full stack

 For underflow, an exception is thrown

 If the catch missed, Java will throw an

ArrayIndexOutOfBounds exception

 For overflow, same things can be done

 Or, user can check for the problem, and copy everything

into a new, larger array

Linked-list implementation of stacks

 Since all the action happens at the top of a stack, a singly-

linked list (SLL) is a fine way to implement it

 The header of the list points to the top of the stack

44 97 23 17

myStack:

 Pushing is inserting an element at the front of the list

 Popping is removing an element from the front of the list

Linked-list implementation details

 With a linked-list representation, overflow will not

happen (unless you exhaust memory, which is

another kind of problem)

 Underflow can happen, and should be handled the

same way as for an array implementation

 When a node is popped from a list, and the node

references an object, the reference (the pointer in

the node) does not need to be set to null

Array implementation of queues

 A queue is a first in, first out (FIFO) data structure

 This is accomplished by inserting at one end (the rear) and

deleting from the other (the front)

 To insert: put new element in location 4, and set rear to 4

 To delete: take element from location 0, and set front to 1

17 23 97 44

0 1 2 3 4 5 6 7

myQueue:

rear = 3front = 0

Array implementation of queues

 Now the array contents “crawl” to the right as elements are
inserted and deleted

 This will be a problem after a while.

17 23 97 44 333After insertion:

23 97 44 333After deletion:

rear = 4front = 1

17 23 97 44Initial queue:

rear = 3front = 0

Circular arrays

 We can treat the array holding the queue elements as

circular (joined at the ends)

44 55 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 1 front = 5

 Elements were added to this queue in the order 11, 22,

33, 44, 55, and will be removed in the same order

 Use: front = (front + 1) % myQueue.length;
and: rear = (rear + 1) % myQueue.length;

Full and empty queues

 If the queue were to become completely full, it would look

like this:

 If we were then to remove all eight elements, making the queue

completely empty, it would look like this:

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5
This is a problem!

Full and empty queues: solutions

 Solution #1: Keep an additional variable

 Solution #2: (Slightly more efficient) Keep a gap between

elements: consider the queue full when it has n-1 elements

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5count = 8

44 55 66 77 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 3 front = 5

Linked-list implementation of queues

 In a queue, insertions occur at one end, deletions at
the other end

 Operations at the front of a singly-linked list (SLL)
are O(1), but at the other end they are O(n)

 Because user have to find the last element each time

 BUT: there is a simple way to use a singly-linked
list to implement both insertions and deletions in
O(1) time

 User always need a pointer to the first thing in the list

 User can keep an additional pointer to the last thing in the
list

Adding a node

17

Node to be

enqueued

To enqueue (add) a node:

Find the current last node

Change it to point to the new last node

Change the last pointer in the list header

2344

last
first

97

Removing a node

 To dequeue (remove) a node:

 Copy the pointer from the first node into the header

44 97 23 17

last
first

Queue implementation details

 With an array implementation:

 There are both overflow and underflow

 Deleted elements should be set to null

 With a linked-list implementation:

 only underflow

 overflow is a global out-of-memory condition

 there is no reason to set deleted elements to null

