ELASTIC AND INELASTIC COLLISIONS

Linear Momentum and Collisions

The linear momentum of a particle of mass m and velocity v is defined as

The linear momentum is a vector quantity.
It's direction is along \mathbf{v}.

The components of the momentum of a particle:

$$
p_{x}=m \cdot v_{x} \quad p_{y}=m \cdot v_{y} \quad p_{z}=m \cdot v_{z}
$$

Elastic and Inelastic Collision

-We begin with a few definitions...

```
A collision in which the total kinetic energy is
conserved is called an elastic collision.
\bulletWhat this means is K}\mp@subsup{K}{f}{}=\mp@subsup{K}{0}{}\mathrm{ .
```

A collision in which the total kinetic energy is not conserved is called an inelastic collision. -What this means is $K_{f} \neq K_{0}$.
-Usually this means is $K_{f}<K_{0}$.

```
A collision in which the colliding objects stick
together is called a totally inelastic
collision.
```

-What this means is that the final velocities
are identical.

- Huygens' two types of collisions:

1. Elastic Collisions - a collision between masses

2. Inelastic Collisions
where the kinetic before equals the Kinetic energy after
-objects cannot stick, crumble bend or deform

- Occurs with atoms or particles at subatomic
- a collision where momentum is still conserved but kinetic energy is not conserved. $\sum E_{k_{\text {before }}} \neq \sum_{k_{\text {after }}}$
- some E_{k} is converted to sound, heat mechanical energy, work
-objects can bend, stick, crumble, detor

Elastic collisions

-Suppose we have a perfectly elastic 1D collision between two equal masses, as shown:

-Mass 2 is originally stationary, and mass 1 is originally moving at $5 \mathrm{~m} / \mathrm{s}$.
-After the collision mass 2 is now moving to the right at $5 \mathrm{~m} / \mathrm{s}$, and mass 1 is stops.

Elastic Collisions

- After collision:
- Two objects
- Remain separate.
- Remain same shape after collision.
- Both momentum and KE remain the same

Lab system

 \&
Centre of Mass system

- In the lab frame, the situation looks like: \downarrow $\mathbf{m}_{\mathbf{2}}$ is initially at rest

- In the CM frame,

the situation looks like: \downarrow

IIGURE 3.24 Scattering of two particles as viewed in the laboratory system.

\leftarrow Looks like this
to an observer moving with the Center of Mass.

FIGURE 3.25 Scattering of two particles as viewed in the center of mass system.

- In the lab frame:

$\mathbf{m}_{\mathbf{2}}$ initially at rest. Connection between $\boldsymbol{\vartheta} \& \boldsymbol{\Theta}$ obtained by looking at detailed transform between lab \& CM coordinates In the CM frame: \downarrow

IIGURE 3.24 Scattering of two particles as viewed in the laboratory system.

FIGURE 3.25 Scattering of two particles as viewed in the center of mass system.
CM frame scattering angle $\Theta=$ same as scattering angle of either particle.

In the CM frame, the total linear momentum of the 2 particles $=0$. Before scattering, the particles move directly towards each other. Afterwards, they move off as shown.

Elastic Collision

-Suppose we have a perfectly elastic 1D collision between two very unequal masses, as shown:
-The masses could be an lephant and a fly. The important thing he is that $M \gg m$.
$\bullet M \gg m$ means that M is very much greater than" m.
-Since $M \gg m$ we can simplify the following:

$$
m+M=M \quad M-m=M \quad m / M=0
$$

-Thus:

$$
M+m=M \quad m-M=-M
$$

$v_{1 \mathrm{f}}=\frac{2 m_{2} v_{2 i}+\left(m_{1}-m_{2}\right) v_{1 i}}{m_{1}+m_{2}}=\frac{2 M v_{2 i}+(m-M) v_{1 i}}{m+M}=\frac{2 M v_{2 i}+-M v_{1 i}}{M}$

$$
v_{2 \mathrm{f}}=\frac{2 m_{1} v_{1 \mathrm{i}}+\left(m_{2}-m_{1}\right) v_{2 i}}{m_{2}+m_{1}}=\frac{2 m v_{1 \mathrm{i}}+(M-m) v_{2 i}}{M+m} \frac{2 m}{M}=\quad V_{1} \frac{M}{\overline{\dot{M}}}+V_{2 i}
$$

Elastic collision of two particles

(Particles bounce off each other without loss of energy)

Momentum is conserved:

$$
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}
$$

Energy is conserved:

$$
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

(a) Initial
(b) Impulse (c) Final

- KE is conserved in an elastic collision.
- If purely elastic both p and KE remain constant before, during, and after the collision.

MOMENTUM AND KINETIC ENERGY REMAIN CONSTANT IN AN ELASTIC COLLISION

$$
\begin{gathered}
m_{1} \mathbf{v}_{\mathbf{1}, \mathbf{i}}+m_{2} \mathbf{v}_{\mathbf{2}, \mathbf{i}}=m_{1} \mathbf{v}_{\mathbf{1}, \mathbf{f}}+m_{2} \mathbf{v}_{\mathbf{2}, \mathbf{f}} \\
\frac{1}{2} m_{1} v_{1, i}^{2}+\frac{1}{2} m_{2} v_{2, i}^{2}=\frac{1}{2} m_{1} v_{1, f^{2}}+\frac{1}{2} m_{2} v_{2, f}^{2}
\end{gathered}
$$

Inelastic Collision

-An inelastic collision is a collision where energy is lost. The kinetic energy of the system is not conserved.

- For example, suppose we drop a
billiard ball, as shown.
- Note that potential energy never
regains its previous level.
-Each bounce loses a little more energy.
-We say that the collisions are

inelastic.

-If instead of a billiard ball we drop
a piece of clay, the clay will stick.
-We say that the collision is
completely inelastic.
We define as completely inelastic any collision where the particles stick together.

Example of perfectly inelastic collision

Figure 6-10
When an arrow pierces a target and remains stuck in the target, the arrow and target have undergone a perfectly inelastic collision (assuming no debris is thrown out).

Perfectly inelastic collision of two particles

(Particles stick together)

$$
\begin{gathered}
\vec{p}_{i}=\vec{p}_{f} \\
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=\left(m_{1}+m_{2}\right) \vec{v}_{f}
\end{gathered}
$$

Notice that \mathbf{p} and \mathbf{v} are vectors and, thus have a direction (+/-)

$$
\begin{gathered}
K_{i}-E_{\text {loss }}=K_{f} \\
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}+E_{\text {loss }}
\end{gathered}
$$

There is a loss in energy $E_{\text {loss }}$

Summary table of collisions

Table 6.2 Types of collisions

Type of collision
Derfectly
inelastic

Some useful information

- Most collisions are neither elastic nor perfectly inelastic.
- Most objects in an inelastic collision do not stick.
- In near elastic collisions, objects lose energy to internal energy and sound.

Cross-section

The cross section of elastic scattering may be defined as the effective target area presented by the target to the incident beam of the particles during elastic scattering.

$$
\sigma_{\mathrm{sc}} \equiv\left(\mathbf{N}_{\mathrm{sc}} / I\right)
$$

Where $N_{s c}$ represents the number of particles scattered per target particle per second and ' 1 ' represents the number of particles incident per unit area per second.

Unit: barn

Impact parameter

Impact parameter of an incident particle is defined as the perpendicular distance of the velocity vector of the particle from the centre of force.
There's a relationship between the impact parameter b and the scattering angle θ.

When b is small, r is small.
the Coulomb force is large.
θ can be large and the particle can be

Differential Cross Section of elastic scattering

$$
\sigma(\Omega) \mathrm{d} \Omega \equiv\left(\mathrm{~N}_{s} / \mathrm{l}\right)
$$

I = incident intensity
$\mathbf{N}_{\mathrm{s}}=$ \# particles/time
scattered into angle $\mathbf{d} \Omega$

FIGURE 3.19 Scattering of an incident beam of particles by a center of force.

- In general, the solid angle Ω depends on the spherical angles Θ, Φ. However, for central forces, there must be symmetry about the axis of the incident beam
$\Rightarrow \sigma(\Omega)(\equiv \sigma(\Theta))$ is independent of azimuthal angle Φ
$\Rightarrow \mathrm{d} \Omega \equiv 2 \pi \sin \Theta \mathrm{~d} \Theta, \sigma(\Omega) \mathrm{d} \Omega \equiv 2 \pi \sin \Theta \mathrm{~d} \Theta$,
$\Theta \equiv$ Angle between incident \& scattered beams, as in the figure.
$\sigma \equiv$ "cross section". It has units of area
Also called the differential cross section.

Differential cross-section in terms of impact parameter

- From these equations for θ we see that different values for the impact parameter correspond to different angles of scattering. Thus we can make a one-to-one correspondence between the scattering angle and b. In particular, we see that if particles approaching the target pass through an annulus of radius b and width $d b$ these will all emerge at an angle $\theta(b)$. This annulus area is the correct differential cross section for the angle of observation. We can invert the relationship to get b $=\mathrm{b}(\theta)$, then $\mathrm{db}=|(\mathrm{db} / \mathrm{d} \theta) \mathrm{d} \theta|$. Consider the area of the section of the annulus shown.

The Rutherford Scattering

$$
\sigma(\Theta)=(1 / 4)\left[\left(Z Z^{\prime} e^{2}\right) /\left(4 \pi \varepsilon_{0} E\right)\right]^{2}\left(I / \sin ^{4}(1 / 2 \Theta)\right)
$$

Eqn shows that no. of particles scattered
in scattering is:
I) Directly proportional to the square of the nuclear charge Ze .
2) Inversely prop to $\boldsymbol{\operatorname { s i n }}^{4}(1 / 2 \boldsymbol{\theta})$
 tween the angie between the scyaptotes and the seattering angle.
3) Inversely prop to square of the initial kinetic energy E .

