Coupled Oscillator

- Two or more oscillators linked together in such a way that an exchange of energy transfer takes place between them.
- In the coupled system, one of the oscillator may be source of energy or the energy may be given to one of the oscillators.

A few examples of two coupled oscillator system:

 (a).Two simple pendulum with their bobs attached to each other by means of a string
 (b).The two coupled LC circuits.
 (c).Two masses attached to each other by three springs, middle spring provides the coupling.

Continued...

- Energy transfer takes place because two oscillators share a common component ,stiffness(capacitance) ,mass(inductance) or frictional force(resistance).
- These system have two degrees of freedom.
- In mechanical coupled oscillator the motion is completely specified by coupled mass than the displacement of bobs or the two masses are the required variables.
- In LC coupled circuits two variables are the currents in the circuits or the charges of two capacitors.

Two Stiffness Coupled Pendulums

Two identical pendulums of same mass m suspended by a weightless rigid rod of length l ,connected by a spring of stiffness.

$$m\frac{d^{2}y}{dt^{2}} = \frac{-mgy}{l} + S(x-y)$$
$$\frac{d^{2}x}{dt^{2}} = -mgx$$

X = x + y

 dt^2

III

Y = x - y

In phase mode of vibration when y=0, x=y

The equation describes the motion

$$\frac{d^2 X}{dt^2} + \frac{g}{l} x = o$$
$$\frac{d^2 Y}{dt^2} + \left(\frac{g}{l} + \frac{2s}{m}\right)x = o$$
$$w_0^2 = \frac{g}{l}$$

the stiffness does not play any role and both pendulums are always in phase.

Continued...

Out of phase mode when x=0, x=-y
the motion is described by: $w_2 = \sqrt{\frac{g}{s} + \frac{2s}{m}}$

Both the pendulums are always out of phase and frequency is more than the natural frequency of each oscillator.

Total Energy Of Coupled Oscillator

- Energy of pendulum A = $\frac{1}{2}\omega_a^2 A_1^2$ Energy of pendulum B = $\frac{1}{2}\omega_a^2 A_2^2$ Total energy = $2m a^2 \omega_a^2$
- Total energy is constant ,the amplitude of the two pendulums is continuously varying with time.
- There is continuous exchange of energy between the two pendulums.

Inductive Coupling

 Inductively coupled are two ideal LC circuit with no ohmic resistance.

Change of current in one circuit ,changes magnetic flux linked with it as a result induced emf is produced in both the circuit.

Continued...

• Coefficient of coupling $k = \frac{M}{\sqrt{L_1 L_2}}$

□ Generally k<1 always.

In case of strong coupling the difference of frequencies of two mode of vibration is more. In case of loose coupling the system will behave as a single oscillator and vibrates with the natural frequency.