
Ch -5

ELECTRIC    

POTENTIAL



Electric Potential
The electric potential V at a given point is the electric potential energy U  

of a small test charge q0 situated at that point divided by the charge 
itself:

SI Unit of Electric Potential: joule/coulomb=volt (V)

Note:
Both the electric potential energy U and the electric potential V

are scalars.

The electric potential energy U and the electric potential V are 

not the same. The electric potential energy is associated with a 

test charge, while electric potential is the property of the electric 

field and does not depend on the test charge.

If we set   at infinity as our reference potential 

energy, 



The Electric Potential Difference
The electric potential difference between any two points i and f in an 

electric field.  

Note:
•Only the differences ΔV and ΔU are measurable in terms of the 

work W.

•The is ΔV property of the electric field and has nothing to do with a 

test charge

•The common name for electric potential difference is "voltage".

• It is equal to the difference in potential energy per unit charge 
between the two points.

• the negative work done by the electric field on a unite charge as that 

particle moves in from point i to point f. 



• Electric field always points from higher 
electric potential to lower electric 
potential.

• A positive charge accelerates from a 
region of higher electric potential 
energy (or higher potential) toward a 
region of lower electric potential energy 
(or lower potential).

• A negative charge accelerates from a 
region of lower potential toward a 
region of higher potential.
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Electrostatic Potential of a Point 
Charge at the Origin

Q

P

r

r

Q

r

rdQ

rda
r

Q
aldErV

r

r

rr

r

0

2

0

2

0

44

ˆ
4

ˆ

spherically symmetric



6

Electrostatic Potential Resulting from 
Multiple Point Charges
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Potential Due to a Group of Point Charges

The potential at a point due to any number of point charges 

can be found by simply finding the potential at the point due 

to each alone and adding the potentials: Vtot=V1+V2+∙∙∙+VN



Electric Potential due to continuous charge distribution

Pictures from Serway & Beichner

(1) Consider potential due to small charge 

element dq, treating this element as a point 

charge. The electric potential dV at some 

point    P due to dq is

dV = k
dq

r

V = k
dq

r

Summing up all elements 



Electric Potential due to continuous charge distribution

(2) If electric field is already known from other considerations 

(Gauss‟s Law), we can calculate the electric potential due to a 

continuous charge distribution using

V = - E . ds

B

A

First determine DV between any two points and then choose 

the electric potential V to be zero at some convenient point.



Electric Potential due to a finite line of charge

A rod of length l located along the x axis 

has a total charge Q and a uniform linear 

charge density l=Q/ l . Find the electric 

potential at a point P located on the y axis 

at  distance a  from the origin. 

Pictures from Serway & Beichner

Length element dx with charge dq = l dx

dV =
r

dq
= k

x2 + a2

dx
k 

Integrate dV over limits x=0 to x = l

l



Electric Potential due to a finite line of charge

Pictures from Serway & Beichner

V = k
dx

Integrate dV over limits x=0 to x = l

l

0
x2 + a2

Note  = Q/ l and 

dx

x2 + a2 = ln (x +   x2+a2 )

We have

Natural Log

V =
kQ

l
ln

l +    l 2+a2

a

l



Electric Potential due to a finite line of charge

A rod of length 2 l located along the x 
axis has a total charge Q and a uniform 
linear charge density =Q/2l . Find the 
electric potential at a point P located on 
the y axis a distance a  from the origin. 

Pictures from Serway & Beichner

l

V = k

dxl

x2 + a2

- l

V =
kQ

2 l
ln

l 2+a2 + l

l 2+a2  - l

How is this result consistent with the E field for infinite line of 
charge obtained using Gauss’s Law? (Homework)



Electric Potential due to a uniformly charged ring

(a) Find an expression for the electric 
potential at point P located on the 
perpendicular central axis of a 
uniformly charged ring of radius a and 
total charge Q. (b) Find an expression 
for the magnitude of the electric field 
at point P. 

Pictures from Serway & Beichner

V = k
dq

r
= k 

dq

(a) Charge element dq is at a distance   x2+a2 from point P. 

x2 + a2

And each element dq is at the same distance from P, i.e.

= dq

x2 + a2

V
k 

=

x2 + a2

kQ



Electric Potential due to a uniformly charged ring

Ex = -

(b) Use Ex = - dV/dx

What about Ey and Ez ?

What is the electric potential at the center of the ring?

What is the electric field at the center of the ring? 

(x2 + a2 )
dV

-1/2 

kQx

dx
= - kQ 

d

dx

Ex =

= - kQ (- ½)

(x2 + a2 )
3/2 

2x(x2 + a2 )
-3/2 



Electric Potential due to a uniformly charged disk

(a) Find an expression for the 
electric potential at point P 
located on the perpendicular 
central axis of a uniformly charged 
disk of radius a and surface charge 
density . (b) Find an expression 
for the magnitude of the electric 
field at point P. 

Pictures from Serway & Beichner

(a) Divide into rings radius r and width dr and surface area dA=2 r dr

k dq
dV =

x2 + r2

=

x2 + r2

k 2 rdr



Electric Potential due to a uniformly charged disk

(a) To find the potential, sum over all rings. 
Integrate dV from r= 0   to r= a:

V =
x2 + r2

2r dr
k

0

a

V = k (x2 + a2 )
1/2 

- x



Electric Potential due to a uniformly charged disk

Pictures from Serway & Beichner

(b) Ex = - dV/dx

k (x2 + a2 )
1/2 

- x

Ex = -
dV

dx

= -
d

dx

x2 + a2

x 
1 -Ex = k



Electric Potential due to a uniformly charged disk

x2 + a2

x 
1 -Ex = k

When you are really close to this disk, then it is as if you are looking 
at an infinite plane of charge, use above equation to deduce the 
electric field. Is the result consistent with the result obtained from 
our discussion using Gauss’s law ? 



Electric Potential due to a uniformly charged sphere

An insulating solid sphere of radius 

R has a uniform positive volume 

charge density and total charge Q. 

(a) Find the electric potential at a point 

outside the sphere, that is, r > R.  

Take the potential to be zero at r = 

. 

(b) Find the potential of a point inside 

the sphere, (r < R). 

In this case, it is easier to use electric field obtained in our 

previous discussions and determine the electric potential.



Electric Potential due to a uniformly charged sphere

Pictures from Serway & Beichner

Outside the sphere, we have 

k Q
Er =

r2
For r > R

To obtain potential at B, we use

VB = -

r

Er dr  = - kQ 

r

r2

dr

VB = 
k Q

r

Potential must be continuous at r = R, => potential at surface 

VC = 
k Q

R



Electric Potential due to a uniformly charged sphere

Pictures from Serway & Beichner

Inside the sphere, we have 

k Q
Er =

R3
For r < R

To obtain the potential difference at D, we use

VD - VC = -

r

Er dr  = - r dr = 

r

R

k Q

R3

r

R

k Q

2R3
( R2 – r2 ) 

VC = 
k Q

R
Since

To obtain the absolute value of the potential at D, we add
the potential at  C to the potential difference VD - VC :

VD = 
k Q

2R
3 -

r2

R2

Check V for r = R

For r < R



Electric Potential due to a uniformly charged sphere

What are the magnitude of the electric 

field and the electric potential at the 

center of the sphere? 

A plot of electric potential V versus 

distance r from the center of a 

uniformly charged insulating spheres 

of radius R. The curve for VD inside 

the sphere is parabolic and joined 

smoothly with the curve for VB outside 

the sphere, which is a hyperbola. The 

potential has a maximum value Vo at 

the center of the sphere. 

What are the differences if the sphere 

is a conducting sphere? 
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Charge Dipole

• An electric charge dipole consists of a pair of equal 
and opposite point charges separated by a small 
distance (i.e., much smaller than the distance at 
which we observe the resulting field).

d

+Q -Q
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Dipole Moment

• Dipole moment p is a measure of the strength

of the dipole and indicates its direction

dQp
+Q

-Q

d
p is in the direction from 

the negative point charge 

to the positive point 

charge
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Electrostatic Potential Due to Charge 
Dipole

observation

point
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Electrostatic Potential Due to Charge 
Dipole (Cont’d)
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Electrostatic Potential Due to Charge 
Dipole (Cont’d)
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Electrostatic Potential Due to Charge 
Dipole in the Far-Field

• assume R>>d

• zeroth order approximation:

RR

RR
0V

not good

enough!
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Electrostatic Potential Due to Charge Dipole 
in the Far-Field (Cont’d)

• first order approximation from geometry:
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Electrostatic Potential Due to Charge Dipole 
in the Far-Field (Cont’d)

• Taylor series approximation:
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Electrostatic Potential Due to Charge Dipole in 
the Far-Field (Cont’d)
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Electrostatic Potential Due to Charge Dipole in 
the Far-Field (Cont’d)

• In terms of the dipole moment:
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Electric Potential due to a charged conductor

Pictures from Serway & Beichner

Every point on the surface of a charged 
conductor in equilibrium is at the same 
electric potential.

Consider two points A and B on the surface of 

a charged conductor as shown. Along a 

surface path connecting these points, E is 

always perpendicular to the displacement ds; 

therefore E.ds = 0. 

Using this result  and 

We find potential difference between A and B is = zero. 

This result applies to any two points on the surface

VB - VA =  - E . ds  =   0

B

A



Electric Potential due to a charged conductor

Pictures from Serway & Beichner

What about inside the conductor? 

Because the electric field is zero inside the 

conductor, we conclude from the relationship E = 

dV/dr that the electric potential is constant 

everywhere inside the conductor and equal to its 

value at the surface. 

What is the work done in moving a positive 

charge from the interior of a charged 

conductor to its surface? 



Electric Potential due to a charged conductor

An arbitrarily shaped conductor carrying a 

positive charge. When the conductor is in 

electrostatic equilibrium, all of the charge resides 

at the surface, E = 0 inside the conductor, and 

the direction of E just outside the conductor is 

perpendicular to the surface. The electric 

potential is constant inside the conductor and is 

equal to the potential   at the surface. 

Note from the spacing of the plus (+) signs that the surface charge 

density is  non-uniform. 

Surface charge density is high where the radius of curvature is 

small and the surface is convex. And vice-versa.

Because E field just outside the conductor is proportional to the 

surface charge density, we see that the electric field is large 

near convex points having small radii of curvature and 

reaches very high values at sharp points.  



Electric Potential due to Spherical Charged Conductor

Pictures from Serway & Beichner

Outside the sphere, we have 

k Q
Er =

r2
For r > R

To obtain potential at B, we use

VB = -

r

Er dr  = - kQ 

r

r2

dr

VB = 
k Q

r



Electric Potential due to a charged conductor

(a) The excess charge on a conducting 

sphere of radius R is uniformly distributed 

on its surface. 

(b) Electric potential versus distance r from 

the center of the charged conducting 

sphere. 

(c) Electric field magnitude versus distance r 

from the center of the charged conducting 

sphere.



Electric Potential due to a charged conductor

The electric field lines (in 

orange) around two spherical 

conductors. The smaller 

sphere has a net charge Q, 

and the larger one has zero 

net charge. The blue curves 

are cross sections of 

equipotential surfaces. 

Pictures from Serway & Beichner

Note that the surface charge density is not uniform



Electric Field from Electric Potential 

Electric field related to electric potential 

by

V = U / qo = E . ds

B

A

This means

dV = E . ds

If electric field has only one component Ex, then E . ds = Ex dx. 

We have dV = Ex dx or 

E x =  
dV

dx



Electric Field from Electric Potential 

Ex =  
dV

dx

• Magnitude of E field in the direction of some coordinate  is 

equal to negative of the derivative of the electric potential w.r.t. 

that coordinate. 

• If the charge distribution creating the E-field has spherical 

symmetry such that the volume charge density depends only on 

the radial distance r, then the electric field is radial.  In this case,  

and E . ds = Er dr

Er =  
dV

dr



Electric Field from Electric Potential 

• For point charge  V = kq/r and we have  E = kq/r2

• The potential changes only in the radial direction, not in 

any direction perpendicular to r. Thus V is a function only of 

r. 

Er =  
dV

dr

• Equipotential surfaces are a family of 

spheres concentric with the 

spherically symmetric charge 

distribution. 

• Equipotential surface perpendicular 

to field lines. 

Pictures from Serway & Beichner



Electric Field from Electric Potential 

• More general expression (in cartesian coordinate)

E =  
dV

dx
+x y z

dV

dy

dV

dz
+

• More general expression (in spherical coordinate)

E =  
dV

dr
+r

1 dV

r d

1        dV

r sin( d
+

r

x

y

z



From general expression to simplified expression

• More general expression (in spherical coordinate)

E =  
dV

dr
+r

1 dV

r d

1        dV

r sin( d
+

If the potential V does no depends on the coordinates 
and , then dV/d = 0 and dV/d = 0, we have

E =  
dV

dr
r
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Poisson’s Equation 

0

2 evq
V Poisson’s

equation

2 is the Laplacian operator.  The Laplacian of a scalar

function is a scalar function equal to the divergence of the

gradient of the original scalar function.
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Laplace’s Equation

• Laplace’s equation is the homogeneous form 
of Poisson’s equation.

• We use Laplace’s equation to solve problems 
where potentials are specified on conducting 
bodies, but no charge exists in the free space 
region.

02V
Laplace’s

equation



Electric Potential Energy

• Test charge qo placed in an electric field E created by 

some other charged object. We get electric force qoE.

• Coulomb‟s force is a conservative force.

• External agent displaces the charge, then work done 

by the field is equal to work done by external agent 

causing the displacement.

• (REMEMBER: Work = force x displacement)

• For an infinitesimal displacement ds, the work done, 

dW, by the electric field on the charge is F . ds = qoE . 

ds. 



Electric Potential Energy

• The potential energy of the charge-field system is 

decreased by an amount dU = qoE . ds = - dW

• For a finite displacement of the charge from a point     

A to a point B, the change in potential energy of the 

system  DU = UB UA is

U = qo E . ds

B

A

Integration performed along the path qo follows as it moves 

from A to B (called  path integral or line integral).

Force is conservative, this line integral does not depend on    

the path taken from A to B. 



Conservative Force

U = qo E . ds

B

A

If the path between A to B does not make any difference, why don’t we 
just use the expression U = -qoEd where d is the straight-line distance 
between A and B ? 

A

B

qo

E



Electric Potential

• The Potential Energy per unit charge U/qo is independent of the 

value of qo and has a unique value at every point in an electric field. 

This quantity is called the electric potential (or simply the potential) 

V.

V = U/qo

• Potential difference V = VB VA between any two points A and B 
is

V = U / qo = E . ds

B

A



Electric Potential at an arbitrary point 

• Electric potential at an arbitrary point in an electric field 

equals the work required per unit charge to bring a 

positive test charge from infinity (where V =0) to that 

point. 
• Electric potential at any point P  is

Vp = E . ds

P

Note that Vp represents the potential difference V

between the point P and a point at infinity. 

S.I. unit J/C defined as a volt (V)    and 1 V/m = 1 N/C



Potential Differences in Uniform E field

• When the electric field E is directed downward, point B is at a 

lower electric potential than point A. A positive test charge that 

moves from point A to point B loses electric potential energy. 

• Electric field lines always point in the direction of   

decreasing electric potential. 

Example: Uniform field along –y axis (E 
parallel to ds)

VB VA = V = E . ds

B

A

= 

B

A

E ds

V = 

B

A

E     ds  = E d



Potential Energy in Uniform E field
Example: Uniform field along –y axis (E parallel to ds)

And suppose a test charge qo moves from A to B. 

We have U = qo V = qo E d

If qo is positive then DU is negative. i.e. a positive 

charge loses electric potential energy when it 

moves in the direction of the electric field. 

This means electric field does work on a positive 

charge when the charge moves in the direction of 

the electric field. 

Release the test charge at rest, it will accelerate 

downward, gaining kinetic energy.

As the charged particle gains kinetic energy, it 

loses an equal amount of potential energy. 

Pictures from Serway & Beichner



Potential Energy in Uniform E field

Example: Uniform field along –y axis (E parallel to ds)

And suppose a test charge qo moves from A to B. 

We have U = qo V = qo E d

If qo is negative then DU  is positive and the 

situation is reversed: a negative charge gains 

electric potential energy when it moves in the 

direction of the electric field.  

The external agent has to do work to cause this   to 

happen. 

Release the test charge at rest, it will accelerate 

upward in the direction opposite to electric field. 

Pictures from Serway & Beichner



Equipotential

V = E . ds  = 0

B

c

VC = VB ( same potential) 

In fact, points along this line 
has the same potential.  We 
have an equipotential line.

Pictures from Serway & Beichner



Equipotential Surfaces

The name equipotential surface is given to any 

surface consisting of a continuous distribution of 

points having the same electric potential. 

No work is done in moving a test charge between 

any two points on an equipotential surface. 

The equipotential surfaces of a uniform electric 

field consist of a family of planes that are all 

perpendicular to the field. 



Equipotential Surface 

Equipotential Surfaces (dashed blue lines) and electric field lines 

(orange lines) for (a) a uniform electric field produced by infinite 

sheet of charge, (b) a point charge, and (c) an electric dipole. In all 

cases, the equipotential surfaces are perpendicular to the electric 

field lines at every point. 

Pictures from Serway & Beichner



Equipotential Surfaces

Rank the work done by the E field on a positively charged 

particle that moves from (i) A to B; (ii) B to C; (iii) C to D; (iv) 

D to E.

Pictures from Serway & Beichner



Electric Potential and Potential Energy due to point charges

Pictures from Serway & Beichner

Consider isolated positive point charge q.       

(i.e. E directed radially outward from the 

charge)

To find electric potential at a point located 

at a distance r from the charge, start with 

the general expression for potential 

difference:

VB VA = E . ds

B

A

Where A and B are two arbitrary points as 

shown. 

E = kq/r2 r, where r is a unit vector 

directed from the charge toward the field 

point. 



Electric Potential and Potential Energy due to point charges

Pictures from Serway & Beichner

We can express E . ds as

E . ds = kq/r2 r . ds

The magnitude of r is 1, dot product r . ds = ds cos

q, where q is the angle between r and ds . 

ds cos q is the projection of ds onto r , thus 

ds cos q = dr. 

VB-VA = - E . ds

B

A

= -

B

A

kq/r2 dr



Electric Potential and Potential Energy due to point charges

Pictures from Serway & Beichner

VB-VA = -

B

A

Er dr

VB-VA = 

rB

rA

kq/r2 dr= -

kq

r
rA

rB

VB-VA = kq 1

rB

1

rA

Depends only on the coordinates and not on the path.



Electric Potential and Potential Energy due to point charges

Pictures from Serway & Beichner

V =
kq

r

rA = infinity (and VA = 0), we have electric 
potential created by a point charge at a 
distance r from the charge given by

Points at same distance r from q    
have the same potential V, i.e. the 
equipotential surfaces are spherical and 
centered on the charge.



Potential due to two or more charges: Superposition

where potential is taken to be zero at infinity and ri is the 
distance from the point P to the charge qi. 

Note that this is a scalar sum rather than a vector sum. 

V =
qi

ri

k
i P

q1

q2

q3

q5

q4

r1

r2

r3r4

r5



Potential Energy of a system of two charges

If two point charges are separated by a distance r12, the potential 

energy of the pair of charges is given by

U12 = k

q1 q2

r12

k =

1

4

Pictures from Serway & Beichner

V1 = potential at a point P due to 
q1, external agent must do work to 
bring a second charge q2 from 
infinity to P and this work = q2V1. 

Definition: This work done is    
equal to the potential energy          
U of the two-particle system. 

P



Potential Energy 

Three point charges are 
fixed at the positions 
shown. The potential 
energy of this system of 
charges is given by  

U = k

q1 q2

r12

q1 q3

r13

q2 q3

r23

+ +

Pictures from Serway & Beichner



Potential energy due to multiple point 
charges

+Q1

21r
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V r
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1

12
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1 2
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U q V

r

+Q3

+Q1+Q2

1 2

13 23

kq kq
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21r

13r23r
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U
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Visualization of Electric Potentials

• The scalar electric potential can be visualized 
using equipotential surfaces.

• An equipotential surface is a surface over which V
is a constant.

• Because the electric field is the negative of the 
gradient of the electric scalar potential, the 
electric field lines are everywhere normal to the 
equipotential surfaces and point in the direction 
of decreasing potential.



CH-6

ELECTRIC 

CURRENT



Electric Charge

• Electric current = a flow of electric charges. The 
electrons, which orbit the nucleus at relatively 
large distances can sometimes become free to 
move → electric current.

• Electric charge is measured in coulombs (C)

• The charge on an electron = e 

= 1.6 x10-19C



Current

Electric current (I)= amount of charge passing 
a point every second. 

Measured in Amperes (A).

Measured using an ammeter, or for very small 
currents, a galvanometer

Current = Charge / time

I = Q / t



Conventional Current.

• Current = movement of electrons

• Electrons move from negative to positive

• However traditionally current was thought of as 
flowing from positive terminal of a battery to the 
negative (wrong way round)

• We still use this convention today-current is 
thought of as flowing from positive to negative 
(conventional current)



DC and AC

• Two types of current exist

• Direct current-always flows in the same 
direction – this is the type of current you 
get from a battery

• Alternating current – here the current 
reverses direction many times per second-
this is the type of current you get from the 
mains



Moving charges and electric currents

There is a current when there is a net flow of charges in motion.

Examples of current:

• Lightning strokes

• In neurons to regulate muscular activities.

• In conductors: in household wiring, light bulbs, and 

electrical appliance.

• Beam of electrons: picture tube in TV.

• Charges of both signs: ionized gases of fluorescent 

lamps.

• In electrolytes: car battery.

• In semiconductor chips: p-type on n-type.



i = dq/dt

q = ∫i dt

The SI units of current is C/s ≡ 

ampere: A

ELECTRIC CURRENT

For steady currents:

q = I Dt



Current is a scalar quantity; the arrows in figures do not indicate 

vectors; they merely show direction (or sense) of flow along a 

conductor, not a direction in space! 

At a branching,

io = i1 + i2 + i3 + … 

Convention: (for historical reasons)

A current arrow is drawn in the direction in which positive charge carriers 

would move, even if the actual charge carriers are negative and move in 

the opposite direction.

Electric current



Current density (J) 

The current density is a vector that describes the flow of charge through a 

cross section of the conductor at a particular point.

What is the direction of J?

J = |J| is the current per unit area through an element.

i = ∫  J · dA

For a uniform current parallel to dA ,

J = i/A

SI units for J: A/m2



The concept of streamlines: stream lines that are closer together imply 

greater current density.

In figure 27-4 the current is the same for every plane that passes 

completely through the conductor, but the current density is not the same 

everywhere!

Drift speed:

When there is a current, the random speed of electrons ~ 106 m/s; 

however, the drift speed (vd) of electrons ~ 10-4 m/s, in the direction 

opposite of the direction of the applied electric field that causes the current.



q = (n A L) e

t = L/ vd

Therefore,

vd = i/(n A e)

or

J = n e vd
Note:

|n|: is the density of charge carriers.

(n e): is the density of charge.

For negative charge carriers, J and vd have opposite directions.

Relation between drift speed and current density



Resistance and Resistivity

Two wires of the same length, made of the same material have different 

cross sectional areas. Which one has a larger R?

Resistance (R) is a measure of how much an object resists current for a 

specific potential difference across its two ends.

R = V/i

High R means little i for a specific V.

Can two objects made from the same material have different R?

The [R] is V/A ≡ W = ohm

A resistor is a device whose function is to provide resistance.



Resistivity (r) is a measure of how much resistance a specific material
has to current, regardless of the object‟s shape.

[For isotropic material]:

r = E/J

[s] = (W m)-1

Note: W-1≡ mho

[r] = W m

Conductivity (s) is the inverse of r. Therefore,

J = s E

Resistance and Resistivity



How does R relate to r for a wire of length L and cross 
sectional area A?

R = r L/A

Can two objects made from the same material have different r?
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Ohm’s Law and Resistors

• Consider a conductor of uniform cross-
section: 

• Let the wires and the two

exposed faces of the 

“resistor” be perfect 

conductor. 

l

A AEV2 F1

+ V -

I • In a perfect conductor:

J is finite

is infinite

E must be zero.
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Ohm’s Law and Resistors (Cont’d)

• To derive Ohm’s law for resistors from Ohm’s law 
at a point, we need to relate the circuit quantities 
(V and I) to the field quantities (E and J)

• The electric field within the material is given by

• The current density in the wire is
l

V

l

VV

l

V
E 1212

A

I
J
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Ohm’s Law and Resistors (Cont’d)

• Plugging into J = sE, we have

• Define the resistance of the device as

I
A

l
V

A

l
R

RIV

Ohm’s law for 

resistors



Ohm‟s law

Ohm‟s law is not really a “law”.

It is an assertion that the current through a device is always directly 

proportional to the potential difference applied to the device.

Similarly, if r is constant [for E = r J] the material is Ohmic.

So, devices can be categorized into Ohmic or Non-Ohmic.

If, for V = i R, the resistance (R) is constant independent of V then we say 

the device/ material is Ohmic.

In general, conductors are Ohmic as long as the electric field is not too 

high.



Electromotive force (emf)

• EMF = the voltage between two ends of a 
circuit when no current is flowing in the circuit



Sources of EMF

1. Electric cells-convert chemical energy to 
electrical energy

Consists of 2 different metals (the electrodes) 
immersed in a substance called an electrolyte.

A battery consists of a no. of cells connected 
together (a car battery = 6 2V cells in series)

Battery of cellsPrimary cell
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Electromotive Force

• Steady current flow requires a closed circuit.

• Electrostatic fields produced by stationary 
charges are conservative.  Thus, they cannot 
by themselves maintain a steady current flow.
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Electromotive Force (Cont’d)

• The current I must 
be zero since the 
electrons cannot 
gain back the energy 
they lose in traveling 
through the resistor.

I

increasing

potential
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Electromotive Force (Cont’d)

• To maintain a steady 
current, there must 
be an element in the 
circuit wherein the 
potential rises along 
the direction of the 
current.

I

+

-



90

Electromotive Force (Cont’d)

• For the potential to rise along the direction of the 
current, there must be a source which converts some 
form of energy to electrical energy.

• Examples of such sources are:

– batteries

– generators

– thermocouples

– photo-voltaic cells
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Inside the Voltage Source
• Eemf is the electric field 

established by the energy 

conversion.

• This field moves positive

charge to the upper plate,

and negative charge to the

lower plate.

• These charges establish an

electrostatic field E.

emfE

+ + +

- - -

E

In equilibrium:

0EE emf
Source is not connected

to external world.
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Electromotive Force (Cont’d)

At all points in the circuit, we must

have

EEE
J

emftotal

exists only in battery

E

I

+

-

EEemf
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Electromotive Force (Cont’d)

• Integrate around the circuit in the direction of 
current flow

C

emf

C

CC

total

ldJldEldE

ldJldE

1

1

0
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Electromotive Force (Cont’d)

• Define the electromotive force (emf) or 
“voltage” of the battery as

ldEV emfemf
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Electromotive Force (Cont’d)

• We also note that

• Thus, we have the circuit relation

RII
A

l
ldJ

C

1

RIVemf
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Continuity Equation

• Using the divergence theorem, we have

• We also have
VS

dvJsdJ

V

ev

V

ev dv
t

q
dvq

dt

d

Becomes a 

partial 

derivative when 

moved inside of 

the integral 

because qev is a 

function of 

position as well 

as time. 
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Continuity Equation (Cont’d)

• Thus,

• Since the above relation must be true for any 

and all regions, we have 

0
VV

dv
t

dvJ

0
t

J
Continuity

Equation
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Continuity Equation (Cont’d)

• For steady currents,

• Thus, 

0
t

0J

J is a solenoidal vector field.
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Continuity Equation in Terms of 
Electric Field

• Ohm’s law in a conducting medium states

• For a homogeneous medium

• But from Gauss’s law,

• Therefore, the volume charge density, , must be zero in a 
homogeneous conducting medium

EJ

00 EEJ

evq
E



Power in electric circuits 

From the principle of conservation of energy, the transfer of 

energy is equal to the decrease in electric potential energy in 

going from [a] to [b]. 

The rate of such transfer is:

P = i V

The energy may be transferred into a resistor, motor, 

rechargeable battery, …etc.

What is the rate of transfer of energy from the battery to the 

device? (the same P!)



If the „device‟ is a resistor, energy will be “dissipated”. 

Why?

For Ohmic devices, the thermal energy produced (i.e. 

dissipated) is:

P = i2 R = V2/R

Power in electric circuits 


