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QUANTUM THEORY OF

HYDROGEN ATOM

 Hydrogen atom is a single proton nucleus 

surrounded by a solitary electron continuously 

revolving in an orbit .The force experienced by 

this electron due to proton is central and the field 

is spherically symmetric. As such potential is 

spherically symmetric.



The potential energy of the electron-proton system is electrostatic: 

Use the three-dimensional time-independent Schrödinger Equation.

For Hydrogen-like atoms (He+ or Li++), replace e2 with Ze2 (Z is the 

atomic number).

In all cases, for better accuracy, replace m with the reduced mass, m.
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Schrödinger Equation to the Hydrogen Atom
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Spherical Coordinates

The potential (central force) 

V(r) depends on the distance 

r between the proton and 

electron.

Transform to spherical polar 

coordinates because of the 

radial symmetry.
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Polar angle

Azimuthal angle



The 

Schrödinger 

Equation in 

Spherical 

Coordinates

Transformed into 

spherical coordinates, 

the Schrödinger 

equation becomes:
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Separable solution

The wave function  is a function of r, , . This is a potentially 

complicated function.

Assume optimistically that  is separable, that is, a product of three 

functions, each of one variable only:

This would make life much simpler—and it turns out to work!

(r,θ, ) = R(r) (θ) ( ) = R       

ψ(r,θ,φ)  = R Θ Φ

Let’s assume 



.


 

∂ ∂R dR
  =    =    

∂r ∂r dr

  
 

∂ ∂ d
  =  R  =  R  

∂θ ∂θ dθ

  
 

  

∂ ∂ d
  =  R  =  R  

∂ ∂ d

The partial derivatives become full derivatives because R, , and  depend 

on r, , and  only. 

With this assumption, the partial derivatives in Schrödinger's equation 

become



To separate variables, plug  = R into Schrödinger's equation and divide 

by R.  The result is 
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sin θ d dR sinθ d d
 r  +  sinθ   

R dr dr dθ dθ

1 d 2mr  sin θ e
          + +   +  E   =  0 .

dφ 4 ε r

We have separated out the  variable!  The term

21 d Φ

Φ d

is a function of  only.   Let's put it over on the right hand side of the 

equation.  This gives us…
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0

sin θ d dR sinθ d d
 r  +  sinθ   

R dr dr dθ dθ

2mr  sin θ e 1 d
          +   +  E   =  -  .

4 ε r d

This equation has the form

is a function of r and  only, and g is a function of  only. f 

f(r,θ)  =  g( )

Thus, we can write the RHS of this equation as 
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21 d

  =  m   .
d



The LHS of our big Schrödinger equation also must equal mℓ
2.  If we set the 

LHS equal to mℓ
2, divide by sin2, and rearrange, we get 
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m1 d dR 2mr e 1 d d
 r   +   +  E  =   -   sinθ  .

R dr dr 4 ε r sin θ  sinθ dθ dθ

Once again we have separated variables.  The LHS is a function of r only, 

and the RHS is a function of  only.  

Again, the only way to satisfy this equation is for LHS=a constant=RHS.  

Solution of the resulting differential equations will result in restrictions on 

this constant.  In this case, the constant must equal an integer times the 

next larger integer: ℓ(ℓ+1). 



We have taken our initial differential equation and split into 3.  Here are the 

pieces, rewritten slightly:
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m1 d d
  sinθ  + +1 -   = 0 

 sinθ dθ dθ sin θ
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0

+11 d dR 2m e
 r   +   +  E -  R = 0

r dr dr 4 ε r r
 

But in the “one” the variables were coupled, and in the “three” the variables 

are separated.  Huge improvement!



We find the first quantum number by solving the differential equation for .
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 + m   =  0

d

That equation should look familiar to you; you've seen it a number of times 

before.  It has solutions which are sines and cosines, or complex 

exponentials.  We write the general solution

 


  j m
  =  A e  .

We will get the constant A by normalization.

Now, because  and +2 represent a single point in space, we must have

 j m j m  + 2
A e   =  A e  .

   

This happens only for mℓ = 0, 1, 2, 3, ... 

mℓ is called the magnetic quantum number.



Our differential equation for  is
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m1 d d
  sinθ  + +1 -   = 0

 sinθ dθ dθ sin θ

It involves the term
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m
+1 -

sin θ

It turns out that from differential equations that the equation for  can be 

solved only if ℓ is an integer greater than or equal to the absolute value of 

mℓ. 

ℓ is another quantum number, called the orbital quantum number, and the 

requirement on ℓ can be restated as mℓ = 0, 1, 2, 3, ..., ℓ.  



Normalized 

Spherical 

Harmonics



It can be solved only for energies E which satisfy the same condition as we 

found on the energies for the Bohr atom: 

Finally, the radial differential equation is  
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+11 d dR 2m e
 r   +   +  E -  R = 0

r dr dr 4 ε r r
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32  ε  n n

n is called the principal quantum number.  



Hydrogen Atom Radial Wave Functions

First few 

radial 

wave 

functions 

Rnℓ

Sub-

scripts 

on R

specify 

the 

values of 

n and ℓ.



Here’s the differential equation for R again: 

Note that the product ℓ(ℓ+1) shows up in the equation for R, and n comes 

out of solving this equation.  Another math requirement for valid solutions is 

that n(ℓ+1).

We can express the requirement that n=1,2,3,… and n(ℓ+1) as a condition 

on ℓ:

ℓ = 0, 1, 2, ..., (n-1). 
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+11 d dR 2m e
 r   +   +  E -  R = 0

r dr dr 4 ε r r
 



We summarize this section by noting that solutions to the Schrödinger 

equation for the hydrogen atom must be of the form 

 = Rnℓ ℓmℓ
mℓ

,

with conditions on the quantum numbers n, ℓ, and mℓ

n = 1, 2, 3, ...

mℓ = 0, 1, 2, 3, ..., ℓ

ℓ = 0, 1, 2, ..., (n-1)





Quantum Numbers

The three quantum numbers:

n: Principal quantum number

ℓ : Orbital angular momentum quantum number

mℓ: Magnetic (azimuthal) quantum number

The restrictions for the quantum numbers:

n = 1, 2, 3, 4, . . . 

ℓ = 0, 1, 2, 3, . . . , n − 1

mℓ = − ℓ, − ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ

Equivalently:

n > 0

ℓ < n

|mℓ| ≤ ℓ

The energy levels are:
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Principal Quantum Number n

 There are many solutions to the radial wave equation, one for each 

positive integer, n.

 The result for the quantized energy is:

A negative energy means that the electron and proton are bound 

together.
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Orbital Angular Momentum Quantum 

Number ℓ

Energy levels are degenerate with respect to ℓ (the energy is 

independent of ℓ).

Physicists use letter names for the various ℓ values:

ℓ = 0 1 2 3 4 5 . . .

Letter = s p d f g h . . .

Atomic states are usually referred to by their values of n and ℓ.

A state with n = 2 and ℓ = 1 is called a 2p state.



It’s associated with the R(r) and f() parts of the wave function. 

Classically, the orbital angular momentum is                 with L = m vorbital r. 

But quantum-mechanically, L is 
related to ℓ by:

In an ℓ = 0 state,

This disagrees with Bohr’s semi-

classical “planetary” model of 

electrons orbiting a nucleus L = nħ, 

where n = 1, 2, …

Orbital Angular Momentum Quantum 

Number ℓ

Classical orbits—which do not 

exist in quantum mechanics

L r p 
  

 )1( L

0)1(0  L



Example: ℓ = 2:

Only certain orientations of     are 

possible. 

And (except when ℓ = 0) we just 

don’t know Lx and Ly!

Magnetic Quantum Number mℓ

The solution for g() specifies that 

mℓ is an integer and is related to 

the z component of L:

 6)1( L

mLz 

L




Electron Probability Density

Thus, the electron probability density in hydrogen is  

         2P(r,θ, ) dV =   dV  =  R R   r  sin θ  dr dθ d  

       P(r,θ, ) dV =  P(r) dr   P(θ) dθ   P( ) d  

Recall that the volume element in spherical polar coordinates is  

2dV  =  r  sin θ  dr dθ d  .

                 
2P(r,θ, ) dV =  R R r  dr    sin θ dθ    d  



We often wish to calculate the probability of finding the electron in some 
volume element in space:  

  .Probability = P r,θ,  dV 

Because  is separable, and R, , and  are orthonormal,* we can write 
the triple integral as three one-dimensional integrals.

   Probability r  =  P r  dr

Probability( ) =  P( ) d  

Probability(θ) =  P(θ) dθ  



Important note:

In spherical polar coordinates, 0  r  , 0    , and 0    2.  It 
makes no sense to calculate probabilities outside these regions.

When you calculate <r>, the integral goes from 0 to , NOT from - to !



R(r) and P(r) for 

the lowest-lying 

states of the 

hydrogen atom.

Note that Rn0 is 

maximal at r = 0! 

But the r2 factor 

reduces the 

probability there to 

0. Nevertheless, 

there’s a nonzero 

probability that the 

electron is inside 

the nucleus.

Probability 

Distribution 

Functions



Probability Distribution Functions

The probability density for the hydrogen atom for three different 

electron states.
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The Bohr Model

In 1913 Niels Bohr proposed a theory of the hydrogen atom that could 

account for its stability and for the frequencies of its spectral lines.

Bohr proposed than an electron can circle the nucleus without losing 

energy only in certain specific orbits.

The energy of the electron depends on which orbit it is in.

Thus Bohr suggested that atomic electrons can have only certain 

particular energies.

http://www.colorado.edu/physics/2000/quantumzone/bohr.html


Bohr’s Model Of The Atom

Bohr in 1913 set down postulates to account for (1) the

stability of the hydrogen atom and (2) the line spectrum

of the atom

Energy level postulate:

An electron can have only specific energy levels in an 

atom

Transitions between energy levels:

An electron in an atom can change energy levels by

undergoing a “transition” from one energy level (ni) to

another (nf) , the energy is emitted as a photon

Energy of emitted photon  =  hν  =  E   -  Ef i E 

This is called Bohr’s frequency condition



quantize angular momentum of circular orbits
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Only those orbits are permissible for which the angular momentum of  

electron is equal to an integral multiple of h/2

This is called Bohr’s quantum condition



Atomic electron follow certain orbits only

The de Broglie wavelength of the electron is exactly equal to the 

circumference of its ground state (the innermost orbit with n=1).

If we consider the vibrations of a wire loop, we find that their wavelengths 

always fit a whole number of times into the loop’s circumference.

Thus, an electron can circle a nucleus only in orbits that contain a whole 

number of de Broglie wavelengths. 

http://www.phys.virginia.edu/classes/252/Bohr_to_Waves/Bohr_to_Waves.html


Copyright © 2007 Pearson Benjamin Cummings.  All rights reserved.

(ultraviolet)

(visible)

(infrared)

HYDROGEN  SPECTRAL  LINES

http://en.wikipedia.org/wiki/Hydrogen_spectral_series


Hydrogen spectral series: patterns in the spectra
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 n  6,7,8, (IR)



E1 = -13.6ev

called the ground state of hydrogen atom

for  n=2, E2 = -3.4ev

n=3, E3 = -1.51ev

n=4, E4 = -0.85ev

so on…

n=∞, E∞= 0ev 
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Energy levels for hydrogen atom



Hydrogen Spectral Lines

A       B      C      D       E      F

Lyman series (UV)

A       B      C      D       E      
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Bohr’s model of the atom accounted mathematically for the energy of each of the transitions shown.

IR

region

UV

region

656 nm

486 nm

434 nm

410 nm

ionization



A new theory should encompass an old theory where the old theory 

was successful.

Quantum theory approximates the results of classical mechanics 

when:

quantum numbers are large

h > 0

The Correspondence Principle



Classical treatment of radiation from “planetary” hydrogen: frequency of 

emitted light = frequency of orbits (+ harmonics)
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Refining the Bohr Atom

nuclear motion: electron and nucleus orbit each other (each orbit 

center of mass).

Two body problem =>center of mass motion +

relative motion (with reduced mass)
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EXCITATION AND IONIZATION POTENTIAL  

 An electron revolving in a stationary orbit of an atom absorbs some 

energy the electron may jump over to an orbit of higher energy. This 

process is called excitation and the atom is said to be in the excited 

state. The energy absorbed to move from one orbit to the other is 

called excitation potential.

 If the energy supplied is large enough to remove an electron from 

the atom, then the atom is said to be ionized. The minimum energy 

needed to ionize an atom is called Ionization energy. Here the 

removed electron will have zero energy. Therefore the Ionization 

potential of a hydrogen atom in the ground state is 13.6 eV.

Excitation and Ionization Potential 



Intrinsic Spin

In 1925, grad students, Samuel 

Goudsmit and George Uhlenbeck, 

in Holland proposed that the 

electron must have an 

intrinsic angular momentum

and therefore a magnetic moment.

This seems reasonable, but Paul Ehrenfest showed that, if so, 

the surface of the spinning electron would be moving faster than 

the speed of light!

In order to explain experimental data, Goudsmit and Uhlenbeck 

proposed that the electron must have an intrinsic spin 

quantum number s = ½.

S




Intrinsic Spin

The spinning electron reacts similarly to the 

orbiting electron in a magnetic field.

The magnetic spin quantum number ms

has only two values, ms = ½.  

And Sz = ms ħ.

The electron’s spin is either “up” (ms = +½) 

or “down” (ms = ½) and can never be 

spinning with its magnetic moment μS

exactly along the z axis.

S


( 1) 3 / 4S s s  


 



What about Sx and Sy?

Quantum mechanics says that, no 

matter how hard we try, we can’t also 

measure them!

If we did, we’d measure ½ ħ, just as 

we’d find for Sz.

But then this measurement would 

perturb Sz, which would then become 

unknown!  

S


The total spin is                                                                        , 

so it’d be tempting to conclude that every component of the 

electron’s spin is either “up” (+½ ħ) or “down” (ms = ½ ħ).  But 

this is not the case!  Instead, they’re undetermined.  We’ll see 

next that the uncertainty in each unmeasured component is 

equal to their maximum possible magnitude (½ ħ)!

2 2 21 1 1
2 2 2

( 1) 3 / 4 ( ) ( ) ( )S s s     


  



Energy Levels 

and Electron 

Probabilities

For hydrogen, the energy 

level depends on the prin-

cipal quantum number n.

An electron can make a 

transition from a state of any 

n value to any other. 

But what about ℓ and mℓ

quantum numbers?



Orbital magnetic dipole moments

Consider electron moving with velocity (v) in a circular Bohr orbit 

of radius r. Produces a current

where T is the orbital period of the electron.

Current loop produces a magnetic field, with a moment 

Specifies strength of magnetic dipole. 

Magnitude of orbital angular momentum is L = mvr = mr2. 

Combining with Eqn. 1 =>

An electron in the first Bohr orbit with              has a magnetic 

moment defined as
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Orbital magnetic dipole moments 

Magnetic moment can also be written in terms of the Bohr magneton:

where gl is the orbital g-factor or Landé g-factor. Gives ratio of magnetic 

moment to angular momentum (in units of    ).

In vector form, Eqn 2 can be written

As

The components of the angular momentum in the z-direction are 

where ml = -l, -l +1, …, 0, …, +l - 1, +l.

The magnetic moment associated with the z-component is 

correspondingly
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Total angular momentum

Orbital and spin angular momenta couple together via 

the spin-orbit interaction.

Internal magnetic field produces torque which results in 

precession of and about their sum, the total 

angular momentum: 

Called L-S coupling or Russell-Saunders coupling. 

Maintains fixed magnitude and z-components, 

specified by two quantum numbers j and mj:

where mj = -j, -j + 1, … , +j - 1, +j.

But what are the values of j?Must use vector inequality



ˆ J 



ˆ L 
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Vector model
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Total angular momentum

From the previous page, we can therefore write

Since, s = 1/2, there are generally two members of series that satisfy this 
inequality: j = l + 1/2, l - 1/2

For l = 0 => j = 1/2

Some examples vector addition rules

J = L + S, L = 3, S = 1

L + S = 4, |L - S| = 2, therefore J = 4, 3, 2.

L = l1 + l2, l1 = 2, l2 = 0

l1 + l2 = 2, | l1 - l2 | = 2, therefore L = 2

J = j1 + j2 ,  j1 = 5/2,  j2 = 3/2

j1 + j2 = 4, | j1 - j2 | = 1, therefore J = 4, 3, 2, 1





j( j  l) | l(l  l)  s(s l) |
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Total angular momentum

For multi-electron atoms where the

spin-orbit coupling is weak, it can be

presumed that the orbital angular

momenta of the individual electrons

add to form a resultant orbital angular

momentum L.

This kind of coupling is called L-S

coupling or Russell-Saunders coupling.

Found to give good agreement with

observed spectral details for many light

atoms.

For heavier atoms, another coupling

scheme called j-j coupling provides

better agreement with experiment.



Total angular momentum in a magnetic field 

 Total angular momentum can be visuallised

as precessing about any externally applied

magnetic field.

 Magnetic energy contribution is proportional

Jz.

 Jz is quantized in values one unit apart, so

for the upper level of the sodium doublet

with j=3/2, the vector model gives the

splitting in bottom figure.

 This treatment of the angular momentum is

appropriate for weak external magnetic

fields where the coupling between the spin

and orbital angular momenta can be

presumed to be stronger than the coupling

to the external field.



The Stern-Gerlach experiment

This experiment confirmed the quantization

of electron spin into two orientations.

Potential energy of electron spin magnetic

moment in magnetic field in z-direction is

The resultant force is

As gsms = ±1,

The deflection distance is then,
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The Stern-Gerlach experiment

Conclusion of Stern-Gerlach experiment:

With field on, classically expect random distribution at target. In fact find 

two  bands as beam is split in two.

There is directional quantisation, parallel or antiparallel to B.

Atomic magnetic moment has mz = ±mB.

Find same deflection for all atoms which have an s electron in the 

outermost   orbital => all angular momenta and magnetic moments of all 

inner electrons cancel. Therefore only measure properties of outer s 

electron.

The s electron has orbital angular momentum l = 0 => only observe 

spin.



Spin-orbit interaction

Fine-structure in atomic spectra cannot be explained by Coulomb 

interaction between nucleus and electron. 

Instead, must consider magnetic interaction between orbital 

magnetic moment and the intrinsic spin magnetic moment.  

Called spin-orbit interaction.

Weak in one-electron atoms, but strong in multi-electron atoms 

where total orbital magnetic moment is large.

Coupling of spin and orbital AM yields a total angular momentum,   .Ĵ



Spin-orbit interaction

Consider reference frame of electron: nucleus moves 

about electron. Electron therefore in current loop 

which produces magnetic field. Charged nucleus 

moving with v produces a current:

According to Ampere’s Law, this produces a 

magnetic field, which at electron is

Using Coulomb’s Law: 

=> 

where

This is the magnetic field experienced by electron 

through E exerted on it by nucleus.
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Spin-orbit interaction
We know that the orientation potential energy of magnetic dipole moment is

but as 

Transforming back to reference frame with nucleus, must include the factor 
of 2 due to Thomas precession (Appendix O of Eisberg & Resnick):

This is the spin-orbit interaction energy. 

More convenient to express in terms of S and L. As force on electron is

can write Eqn. 5 as
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Spin-orbit interaction

As 

Substituting the last expression for B into Eqn. 6 gives:

Evaluating gs and mB, we obtain:

For hydrogenic atoms,  

Substituting into equation for E:

Expression for spin-orbit interaction in terms of L and S. Note,
is the fine structure constant.
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Hydrogen fine structure

Spectral lines of H found to be composed

of closely spaced doublets. Splitting is

due to interactions between electron spin

S and the orbital angular momentum L =>

spin-orbit coupling.

H line is single line according to the Bohr

or Schrödinger theory. Occurs at 656.47

nm for H and 656.29 nm for D (isotope

shift, ~0.2 nm).

Spin-orbit coupling produces fine-structure

splitting of ~0.016 nm. Corresponds to an

internal magnetic field on the electron of

about 0.4 Tesla.

H



ZEEMAN EFFECT

Atoms in magnetic fields:   

Normal Zeeman effect

Anomalous Zeeman effect



Zeeman Effect

First reported by Zeeman in 1896. Interpreted by Lorentz.

Interaction between atoms and field can be classified into two 

regimes:

 Weak fields: Zeeman effect, either normal or 

anomalous.

 Strong fields: Paschen-Back effect.

Normal Zeeman effect agrees with the classical theory of Lorentz. 

Anomalous effect depends on electron spin, and is purely quantum 

mechanical.



Observed in atoms with no spin. 

 Total spin of an N-electron atom is

 Filled shells have no net spin, so only consider valence electrons. 

Since electrons have spin 1/2, not possible to obtain S = 0 from 

atoms with odd number of valence electrons.  

Even number of electrons can produce S = 0 state (e.g., for two 

valence electrons, S = 0 or 1). 

All ground states of Group II (divalent atoms) have ns2

configurations => always have S = 0 as two electrons align with their 

spins antiparallel.

Magnetic moment of an atom with no spin will be due entirely to 

orbital motion:

Normal Zeeman effect
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Normal Zeeman effect

 Interaction energy between magnetic moment and a uniform 

magnetic field is:

 Assume B is only in the z-direction:

 The interaction energy of the atom is therefore,  

 where ml is the orbital magnetic quantum number. This equation 

implies that B splits the degeneracy of the ml states evenly.
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Normal Zeeman effect transitions

But what transitions occur? Must consider selections rules for ml: ml = 0, 

±1. 

Consider transitions between two Zeeman-split atomic levels. Allowed 

transition frequencies are therefore,

 Emitted photons also have a polarization, depending

on which transition they result from.
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Normal Zeeman effect transitions

Longitudinal Zeeman effect: Observing along magnetic field,

photons must propagate in z-direction.

Light waves are transverse, and so only x and y polarizations are

possible.

The z-component (ml = 0) is therefore absent and only observe ml

= ± 1.

Termed -components and are circularly polarized.

Transverse Zeeman effect: When observed at right angles to

the field, all three lines are present.

ml = 0 are linearly polarized || to the field.

ml = ±1 transitions are linearly polarized at right angles to field.



Normal Zeeman effect transitions

Last two columns of table below refer to the 

polarizations observed in the longitudinal and 

transverse directions.

The direction of circular polarization in the 

longitudinal observations is defined relative toB B.

Interpretation proposed by Lorentz (1896)

 -

(ml=-1 )


(ml=0 )

 +

(ml=+1 )



Anomalous Zeeman effect

Discovered by Thomas Preston in Dublin in 1897.

Occurs in atoms with non-zero spin => atoms with odd number of

electrons.

In LS-coupling, the spin-orbit interaction couples the spin and orbital

angular momenta to give a total angular momentum according to

In an applied B-field, J precesses about B at the Larmor

frequency.

L and S precess more rapidly about J to due to spin-orbit

interaction. Spin-orbit effect therefore stronger.
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Anomalous Zeeman effect

Interaction energy of atom is equal to sum of interactions of spin and 

orbital magnetic moments with B-field:

where gs= 2, and the < … > is the expectation value. The normal 

Zeeman effect is obtained by setting           and

In the case of precessing atomic magnetic in figure on last slide, 

neither Sz nor Lz are constant. Only is well defined.

Must therefore project L and S onto J and project onto 

z-axis =>





E  mzBz

 (mz

orbital  mz

spin)Bz

 ˆ L z  gs
ˆ S z

mB


Bz





ˆ m  | ˆ L | cos1
ˆ J 

| ˆ J |
 2 | ˆ S | cos2

ˆ J 

| ˆ J |

mB





ˆ S z  0 



ˆ L z  ml .





ˆ J z  m j



Anomalous Zeeman effect

The angles 1 and 2 can be calculated from the scalar products of the  

respective vectors:

which implies that (1)

Now, using implies that

therefore

so that

Similarly, and

2
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Anomalous Zeeman effect

We can therefore write Eqn. 1 as

This can be written in the form

where gJ is the Lande g-factor given by

This implies that 

and hence the interaction energy with the B-field is 

Classical theory predicts that gj = 1. Departure from this due to spin in 

quantum picture.
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Anomalous Zeeman effect spectra

Spectra can be understood by applying the 

selection rules for J and mj:

Polarizations of the transitions follow the 

same patterns as for normal Zeeman effect.

For example, consider the Na D-lines 

at right produced by 3p  3s transition. 
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Emission/Absorption of Radiation by Atoms 

Emission/absorption lines are due to radiative transitions:

1. Radiative (or Stimulated) absorption: 

Photon with energy (E = h = E2 - E1) excites electron from 

lower energy level.

Can only occur if E = h = E2 - E1

2. Radiative recombination/emission:

Electron makes transition to lower energy level and emits photon 

with energy 

h’ = E2 - E1.

E2

E1

E2

E1

E =h



Emission/Absorption of Radiation by Atoms

Radiative recombination can be either:  

Spontaneous emission: Electron minimizes its total energy by emitting 
photon and making transition from E2 to E1.

Emitted photon has energy E
’ = h’ = E2 - E1

Stimulated emission: If photon is strongly coupled with electron, cause 
electron to decay to lower energy level, releasing a photon of the same 
energy. 

Can only occur if E = h = E2 - E1 Also, h’ = h

E2

E1

E2

E1

E2

E1

E2
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E
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E =h
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Selection Rules

The probability is proportional to 

the mag square of the 

dipole moment:

Allowed transitions:

Electrons absorbing or emitting photons can change states 

when ℓ = 1 and mℓ = 0, 1.

Forbidden transitions:

Other transitions are possible 

but occur with much smaller 

probabilities.  

*

f id er  
 

We can use the wave functions

to calculate transition probabilities 

for the electron to change from 

one state to another.

where i and f

are the initial and 

final states of the 

transition.



Pauli Exclusion Principle

 According to the quantum theory, two electrons in an atom can never be 

in the same quantum state at the same time. 

 This rule is known as the Pauli exclusion principle after Wolfgang Pauli, 

the physicist who discovered it.

 Once all the quantum states in the first level are occupied by electrons, 

the next electron has to go into a higher energy level.

http://en.wikipedia.org/wiki/Pauli_exclusion_principle
http://en.wikipedia.org/wiki/Pauli_exclusion_principle
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Pauli principle

The total wave function must be antisymmetric under 

the interchange of any pair of identical fermions and

symmetrical under the interchange of any pair of 

identical bosons. 

         1 1 1 1 2 1 1 1 2 1ψ x ,x x x x x 0     Fermions:

 No two fermions can occupy the same state.



P460 - Helium 79

 There are symmetric and antisymmetric spatial wavefunctions
which go with the anti and sym spin functions. Note a,b are the 
spatial quantum numbers n,l,m but not spin

 when the two electrons are close to each other, the 
antisymmetric state is suppressed (goes to 0 if exactly the 
same point). Likewise the symmetric state is enhanced

  “Exchange Force”  S=1 spin state has the electrons (on 
average) further apart (as antisymmetric space). So smaller 
repulsive potential and so lower energy

 note if a=b, same space state, must have S=1 (“prove” Pauli 
exclusion)
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