
Phase Space
 The space in which the state of constituent particles of 

a system can be described in terms of position co-
ordinates is called position space.

 The space in which the state of constituent particles of 
a system can be described in terms of momentum co-
ordinates is called momentum space.

 The space in which the state of constituent particles of 
a system can be described in terms of position and 
momentum co-ordinates is called phase space.



Number of the phase space cells in 
the momentum interval p and p+dp
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STATISTICS
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BASIC APPROACH IN THREE STATISTICS

 In each statistics we calculate the thermodynamic 
probability (W) for any given macrostate .

d(lnW) =0                                                                                                  

 In any system consisting of given number n of particles 
having total energy u, quantities n and u are constant.
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MAXWELL BOLTZMANN STATISTICS

Assumptions of MB statistics

1. The available volume of the phase space cell can be 
as small as we desire and may even approach to zero.

2. The phase space can be divided into a very large 
number of cells.

3. Any number of particles can occupy a phase space 
cell.

4. The particles of the system are distinguishable.



MAXWELL BOLTZMANN DISTRIBUTION LAW
 Consider an sample of an ideal gas  consisting of n 

molecules and total energy u.

 N particles are distributed in k energy intervals such 
that each interval is divided into cells i.e. g1 ,g2,g3…..gk

then thermodynamic probability of equilibrium state 
is
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MAXWELL BOLTZMANN DISTRIBUTION LAW……. 

 

 
dueu

kT

n
du

Wd

W

n

g
nnnn

kT

u

ki

i i

n

k

i











 

2

3u

1

1
321,

2
n           

ondistributienergy  of lawon distributi

boltzmann maxwellget   weequations  theseusing

0)(ln    therfore

constant is ln state mequilibriu for the

!
!),....,w(n







DISTRIBUTION OF SPEEDS
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The distribution of

molecular speeds for N2

at three temperatures



Features of the Speed Distribution
The most probable speed is at the peak of the 

curve.

The most probable speed increases as the 
temperature increases.

The distribution broadens as the temperature 
increases. 



Relationship between molar mass and

molecular speed



Features of the Speed Distribution

The most probable speed increases as the 

molecular mass decreases.

The distribution broadens as the molecular 

mass decreases.



MOST PROBABLE SPEED
 It is defined as the speed possessed by the maximum 

number of molecules in a sample at a given 
temperature

m

kT

m

kT
vm 41.1  

2




Average speed
 It is defined as the average of the speed of all the gas 

molecules lies between v and v + dv
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ROOT MEAN SQUARE SPEED
 It is defined as the square root of means of the squares 

of the speeds of all the molecules
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The Three Measures of the Speed of a 

Typical Particle
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Various Ways to Summarize the ‘Mean’ 
Speed. 



Limitations of MB statistics- Birth 
of Quantum statistics
 Maxwell Boltzmann statistics  is able to explain the 

distribution of energy among the molecules of a gas.

 But system of photons and electrons are subjected to 
certain constraints which are not applicable to gas 
systems.

 This leads to the origin of quantum statistics  which is 
based on the concept of quantization of energy.



Quantum statistics

Quantum 
statistics

Bose Einstein 
statistics

Fermi Dirac 
statistics



Bose Einstein statistics
Basic assumptions

 The particles of the system are indistinguishable and 
identical.

 Available volume of the phase space cell cannot be less 
than h3 , where h is Planck's constant.

 Any number of particles can occupy a phase space cell.

 The number of phase space cells is comparable with 
the number of  particles .

 The particles under consideration do not obey Pauli's 
exclusion principle.



BOSONS

 Bosons are the particles of a system whose energy 
spectra can be explained on the basis of BE 
statistics

 Bosons do not obey Pauli's exclusion principle.

 Boson have integral spin.

 Examples : photons, K and pi mesons etc.



Fermi Dirac statistics 
Basic assumptions

 The particles of the system are indistinguishable and 
identical.

 Available volume of the phase space cell cannot be less 
than h3 , where h is Planck's constant.

 A phase space cell cannot more than one particle.

 The number of phase space cells is large as compared 
with the number of  particles .

 The particles under consideration  obey Pauli's 
exclusion principle.



FERMIONS

 fermions are the particles of a system whose energy spectra 
can be explained on the basis of FD statistics

 fermions  obey Pauli's exclusion principle.

 fermions have half  integral spin.

 Examples : electrons , positrons, neutrons etc.



Size of phase space cell in quantum 
statistics
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Definition of a black body
A black body is an ideal body 
which allows the whole of the 
incident radiation to pass into 
itself ( without reflecting the 
energy ) and absorbs within itself 
this whole incident radiation 
(without passing  on the energy). 
This propety is valid for radiation 
corresponding to all wavelengths 
and to all angels of incidence. 
Therefore, the black body is an 
ideal absorber of incident 
radaition.



ENERGY DISTRIBUTION IN THE SPECTRUM OF 
BLACK BODY RADIATIONS

 Emissive power of the black body is 
greater at higher temperatures.

 Amount of energy emitted per second 
increases for all wavelengths with 
increase of temperature of black body.

 Amount of energy emitted per second  
is higher for intermediate wavelength.

 Corresponding to every temperature of 
the black body there is a wavelength    
for which  the emissive power is 
highest.

 The wavelength   corresponding to 
maximum emission shifts towards 
shorter values as the temperature of 
the black body increases.



Planck Law
We have two forms. As a function of 

wavelength.

And as a function of frequency 

The Planck Law gives a distribution that 
peaks at a certain wavelength, the peak 
shifts to shorter wavelengths for higher 
temperatures, and the area under the 
curve grows rapidly with increasing 
temperature.

Black-Body Radiation Laws 
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Wein’s displacement law
 Wavelength        of the radiations

corresponding to maximum 
emissive power of the black body 
varies inversely as the absolute 
temperature T.

 The wavelength   corresponding 
to maximum emission shifts 
towards shorter values as the 
temperature of the black body 
increases.

 This law tells us as we heat an 
object up, its color changes from 
red to orange to white hot.
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Rayleigh jean’s law
 Energy density of the radiations corresponding to the 

wavelength     is 

 It could explain the experimentally observed energy 
distribution  only for long wavelengths.

 Rayleigh jean’s law is a special   case of Planck's law for 
longer wavelengths.
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Stefan’s law
 Stefan’s law states that  the amount of energy of the 

radiations emitted from a perfectly black body per second 
per unit area is directly proportional to the fourth power of 
absolute temperature.

 It is valid for whole range of wavelengths .

 It is a special case of Planck's law.
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Summary
- A black body is a theoretical object that absorbs 100% of the 

radiation that hits it. Therefore it reflects no radiation and 
appears perfectly black.

- Roughly we can say that the stars radiate like blackbody 
radiators. This is important because it means that we can use the 
theory for blackbody radiators to infer things about stars. 

- At a particular temperature the black body would emit the 
maximum amount of energy possible for that temperature.

- Blackbody radiation does not depend on the type of object 
emitting it. Entire spectrum of blackbody radiation depends on 
only one parameter, the temperature, T.



MB statistics as special case of BE 
and FD statistics
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MB statistics as special case of BE 
and FD statistics…….
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